Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Parameterized Task Graph Scheduling Algorithm for Comparing Algorithmic Components (2403.07112v1)

Published 11 Mar 2024 in cs.DC

Abstract: Scheduling distributed applications modeled as directed, acyclic task graphs to run on heterogeneous compute networks is a fundamental (NP-Hard) problem in distributed computing for which many heuristic algorithms have been proposed over the past decades. Many of these algorithms fall under the list-scheduling paradigm, whereby the algorithm first computes priorities for the tasks and then schedules them greedily to the compute node that minimizes some cost function. Thus, many algorithms differ from each other only in a few key components (e.g., the way they prioritize tasks, their cost functions, where the algorithms consider inserting tasks into a partially complete schedule, etc.). In this paper, we propose a generalized parametric list-scheduling algorithm that allows mixing and matching different algorithmic components to produce 72 unique algorithms. We benchmark these algorithms on four datasets to study the individual and combined effects of different algorithmic components on performance and runtime.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. A. Bazzi and A. Norouzi-Fard, “Towards tight lower bounds for scheduling problems,” in Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, ser. Lecture Notes in Computer Science, N. Bansal and I. Finocchi, Eds., vol. 9294.   Springer, 2015, pp. 118–129. [Online]. Available: https://doi.org/10.1007/978-3-662-48350-3_11
  2. A. Authors, “Scheduling algorithms gathered,” Github, 2023. [Online]. Available: https://anonymous.4open.science/r/saga-1F6D/README.md
  3. R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM Journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969. [Online]. Available: https://doi.org/10.1137/0117039
  4. H. Topcuoglu, S. Hariri, and M. Wu, “Task scheduling algorithms for heterogeneous processors,” in 8th Heterogeneous Computing Workshop, HCW 1999, San Juan, Puerto Rico, April12, 1999.   IEEE Computer Society, 1999, pp. 3–14. [Online]. Available: https://doi.org/10.1109/HCW.1999.765092
  5. H. Wang and O. Sinnen, “List-scheduling versus cluster-scheduling,” IEEE Trans. Parallel Distributed Syst., vol. 29, no. 8, pp. 1736–1749, 2018. [Online]. Available: https://doi.org/10.1109/TPDS.2018.2808959
  6. A. K. Maurya and A. K. Tripathi, “On benchmarking task scheduling algorithms for heterogeneous computing systems,” J. Supercomput., vol. 74, no. 7, pp. 3039–3070, 2018. [Online]. Available: https://doi.org/10.1007/s11227-018-2355-0
  7. Y.-K. Kwok and I. Ahmad, “Benchmarking the task graph scheduling algorithms,” in Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing, 1998, pp. 531–537.
  8. T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. A. Hensgen, and R. F. Freund, “A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems,” J. Parallel Distributed Comput., vol. 61, no. 6, pp. 810–837, 2001. [Online]. Available: https://doi.org/10.1006/jpdc.2000.1714
  9. T. Braun, H. Siegal, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen, and R. Freund, “A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing systems,” in Proceedings. Eighth Heterogeneous Computing Workshop (HCW’99), 1999, pp. 15–29.
  10. T. N’Takpé and F. Suter, “Critical path and area based scheduling of parallel task graphs on heterogeneous platforms,” in 12th International Conference on Parallel and Distributed Systems, ICPADS 2006, Minneapolis, Minnesota, USA, July 12-15, 2006.   IEEE Computer Society, 2006, pp. 3–10. [Online]. Available: https://doi.org/10.1109/ICPADS.2006.32
  11. D. Cordeiro, G. Mouniê, S. Perarnau, D. Trystram, J.-M. Vincent, and F. Wagner, “Random graph generation for scheduling simulations.”   ICST, 5 2010.
  12. R. F. da Silva, R. Mayani, Y. Shi, A. R. Kemanian, M. Rynge, and E. Deelman, “Empowering agroecosystem modeling with HTC scientific workflows: The cycles model use case,” in 2019 IEEE International Conference on Big Data (IEEE BigData), Los Angeles, CA, USA, December 9-12, 2019, C. K. Baru, J. Huan, L. Khan, X. Hu, R. Ak, Y. Tian, R. S. Barga, C. Zaniolo, K. Lee, and Y. F. Ye, Eds.   IEEE, 2019, pp. 4545–4552. [Online]. Available: https://doi.org/10.1109/BigData47090.2019.9006107
  13. J. Coleman and B. Krishnamachari, “Comparing task graph scheduling algorithms: An adversarial approach,” under review.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com