Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Deep Learning Approaches for Human Action Recognition in Video Data (2403.06810v1)

Published 11 Mar 2024 in cs.CV

Abstract: Human action recognition in videos is a critical task with significant implications for numerous applications, including surveillance, sports analytics, and healthcare. The challenge lies in creating models that are both precise in their recognition capabilities and efficient enough for practical use. This study conducts an in-depth analysis of various deep learning models to address this challenge. Utilizing a subset of the UCF101 Videos dataset, we focus on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Two-Stream ConvNets. The research reveals that while CNNs effectively capture spatial features and RNNs encode temporal sequences, Two-Stream ConvNets exhibit superior performance by integrating spatial and temporal dimensions. These insights are distilled from the evaluation metrics of accuracy, precision, recall, and F1-score. The results of this study underscore the potential of composite models in achieving robust human action recognition and suggest avenues for future research in optimizing these models for real-world deployment.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube