Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

$C_{2k+1}$-coloring of bounded-diameter graphs (2403.06694v3)

Published 11 Mar 2024 in math.CO and cs.CC

Abstract: For a fixed graph $H$, in the graph homomorphism problem, denoted by $Hom(H)$, we are given a graph $G$ and we have to determine whether there exists an edge-preserving mapping $\varphi: V(G) \to V(H)$. Note that $Hom(C_3)$, where $C_3$ is the cycle of length $3$, is equivalent to $3$-Coloring. The question whether $3$-Coloring is polynomial-time solvable on diameter-$2$ graphs is a well-known open problem. In this paper we study the $Hom(C_{2k+1})$ problem on bounded-diameter graphs for $k\geq 2$, so we consider all other odd cycles than $C_3$. We prove that for $k\geq 2$, the $Hom(C_{2k+1})$ problem is polynomial-time solvable on diameter-$(k+1)$ graphs -- note that such a result for $k=1$ would be precisely a polynomial-time algorithm for $3$-Coloring of diameter-$2$ graphs. Furthermore, we give subexponential-time algorithms for diameter-$(k+2)$ graphs. We complement these results with a lower bound for diameter-$(2k+2)$ graphs -- in this class of graphs the $Hom(C_{2k+1})$ problem is NP-hard and cannot be solved in subexponential-time, unless the ETH fails. Finally, we consider another direction of generalizing $3$-Coloring on diameter-$2$ graphs. We consider other target graphs $H$ than odd cycles but we restrict ourselves to diameter $2$. We show that if $H$ is triangle-free, then $Hom(H)$ is polynomial-time solvable on diameter-$2$ graphs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: