Papers
Topics
Authors
Recent
Search
2000 character limit reached

DivCon: Divide and Conquer for Progressive Text-to-Image Generation

Published 11 Mar 2024 in cs.CV | (2403.06400v2)

Abstract: Diffusion-driven text-to-image (T2I) generation has achieved remarkable advancements. To further improve T2I models' capability in numerical and spatial reasoning, the layout is employed as an intermedium to bridge LLMs and layout-based diffusion models. However, these methods still struggle with generating images from textural prompts with multiple objects and complicated spatial relationships. To tackle this challenge, we introduce a divide-and-conquer approach which decouples the T2I generation task into simple subtasks. Our approach divides the layout prediction stage into numerical & spatial reasoning and bounding box prediction. Then, the layout-to-image generation stage is conducted in an iterative manner to reconstruct objects from easy ones to difficult ones. We conduct experiments on the HRS and NSR-1K benchmarks and our approach outperforms previous state-of-the-art models with notable margins. In addition, visual results demonstrate that our approach significantly improves the controllability and consistency in generating multiple objects from complex textural prompts.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.