Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Higher-order spring-coupled multilevel Monte Carlo method for invariant measures (2403.06310v1)

Published 10 Mar 2024 in math.NA, cs.NA, and math.PR

Abstract: A higher-order change-of-measure multilevel Monte Carlo (MLMC) method is developed for computing weak approximations of the invariant measures of SDE with drift coefficients that do not satisfy the contractivity condition. This is achieved by introducing a spring term in the pairwise coupling of the MLMC trajectories employing the order 1.5 strong It^o--Taylor method. Through this, we can recover the contractivity property of the drift coefficient while still retaining the telescoping sum property needed for implementing the MLMC method. We show that the variance of the change-of-measure MLMC method grows linearly in time $T$ for all $T > 0$, and for all sufficiently small timestep size $h > 0$. For a given error tolerance $\epsilon > 0$, we prove that the method achieves a mean-square-error accuracy of $O(\epsilon2)$ with a computational cost of $O(\epsilon{-2} \big\vert \log \epsilon \big\vert{3/2} (\log \big\vert \log \epsilon \big\vert){1/2})$ for uniformly Lipschitz continuous payoff functions and $O \big( \epsilon{-2} \big\vert \log \epsilon \big\vert{5/3 + \xi} \big)$ for discontinuous payoffs, respectively, where $\xi > 0$. We also observe an improvement in the constant associated with the computational cost of the higher-order change-of-measure MLMC method, marking an improvement over the Milstein change-of-measure method in the aforementioned seminal work by M. Giles and W. Fang. Several numerical tests were performed to verify the theoretical results and assess the robustness of the method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.