Lightning NeRF: Efficient Hybrid Scene Representation for Autonomous Driving (2403.05907v1)
Abstract: Recent studies have highlighted the promising application of NeRF in autonomous driving contexts. However, the complexity of outdoor environments, combined with the restricted viewpoints in driving scenarios, complicates the task of precisely reconstructing scene geometry. Such challenges often lead to diminished quality in reconstructions and extended durations for both training and rendering. To tackle these challenges, we present Lightning NeRF. It uses an efficient hybrid scene representation that effectively utilizes the geometry prior from LiDAR in autonomous driving scenarios. Lightning NeRF significantly improves the novel view synthesis performance of NeRF and reduces computational overheads. Through evaluations on real-world datasets, such as KITTI-360, Argoverse2, and our private dataset, we demonstrate that our approach not only exceeds the current state-of-the-art in novel view synthesis quality but also achieves a five-fold increase in training speed and a ten-fold improvement in rendering speed. Codes are available at https://github.com/VISION-SJTU/Lightning-NeRF .
- B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “NeRF: Representing scenes as neural radiance fields for view synthesis,” in ECCV, 2020.
- R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy, and D. Duckworth, “NeRF in the wild: Neural radiance fields for unconstrained photo collections,” in CVPR, 2021.
- F. Lu, Y. Xu, G. Chen, H. Li, K.-Y. Lin, and C. Jiang, “Urban radiance field representation with deformable neural mesh primitives,” in ICCV, 2023.
- J. Guo, N. Deng, X. Li, Y. Bai, B. Shi, C. Wang, C. Ding, D. Wang, and Y. Li, “StreetSurf: Extending multi-view implicit surface reconstruction to street views,” arXiv preprint arXiv:2306.04988, 2023.
- K. Rematas, A. Liu, P. P. Srinivasan, J. T. Barron, A. Tagliasacchi, T. Funkhouser, and V. Ferrari, “Urban radiance fields,” in CVPR, 2022.
- Z. Yang, Y. Chen, J. Wang, S. Manivasagam, W.-C. Ma, A. J. Yang, and R. Urtasun, “UniSim: A neural closed-loop sensor simulator,” in CVPR, 2023.
- Y. Liao, J. Xie, and A. Geiger, “KITTI-360: A novel dataset and benchmarks for urban scene understanding in 2D and 3D,” TPAMI, vol. 45, no. 3, pp. 3292–3310, 2023.
- B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan, R. Kumar, A. Hartnett, J. K. Pontes, et al., “Argoverse 2: Next generation datasets for self-driving perception and forecasting,” arXiv preprint arXiv:2301.00493, 2023.
- K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “NeRF++: Analyzing and improving neural radiance fields,” arXiv preprint arXiv:2010.07492, 2020.
- Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu, “NeRF–: Neural radiance fields without known camera parameters,” arXiv preprint arXiv:2102.07064, 2021.
- C.-H. Lin, W.-C. Ma, A. Torralba, and S. Lucey, “BARF: Bundle-adjusting neural radiance fields,” in ICCV, 2021.
- J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srinivasan, “Mip-NeRF: A multiscale representation for anti-aliasing neural radiance fields,” in CVPR, 2021.
- J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman, “Mip-NeRF 360: Unbounded anti-aliased neural radiance fields,” in CVPR, 2022.
- A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-NeRF: Neural radiance fields for dynamic scenes,” in CVPR, 2021.
- X. Fu, S. Zhang, T. Chen, Y. Lu, L. Zhu, X. Zhou, A. Geiger, and Y. Liao, “Panoptic NeRF: 3D-to-2D label transfer for panoptic urban scene segmentation,” in 3DV, 2022.
- J. Ye, N. Wang, and X. Wang, “FeatureNeRF: Learning generalizable NeRFs by distilling foundation models,” in ICCV, 2023.
- H. Chen, C. Li, M. Guo, Z. Yan, and G. H. Lee, “GNeSF: Generalizable neural semantic fields,” in NeurIPS, 2023.
- P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debevec, “Baking neural radiance fields for real-time view synthesis,” in ICCV, 2021.
- T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with a multiresolution hash encoding,” ToG, vol. 41, no. 4, pp. 1–15, 2022.
- L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt, “Neural sparse voxel fields,” NIPS, 2020.
- M. Piala and R. Clark, “TermiNeRF: Ray termination prediction for efficient neural rendering,” in 3DV, 2021.
- T. Neff, P. Stadlbauer, M. Parger, A. Kurz, J. H. Mueller, C. R. A. Chaitanya, A. Kaplanyan, and M. Steinberger, “DONeRF: Towards real-time rendering of compact neural radiance fields using depth oracle networks,” in Computer Graphics Forum, 2021.
- Q. Xu, Z. Xu, J. Philip, S. Bi, Z. Shu, K. Sunkavalli, and U. Neumann, “Point-NeRF: Point-based neural radiance fields,” in CVPR, 2022.
- C. Reiser, S. Peng, Y. Liao, and A. Geiger, “KiloNeRF: Speeding up neural radiance fields with thousands of tiny mlps,” in ICCV, 2021.
- S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin, “FastNeRF: High-fidelity neural rendering at 200fps,” in ICCV, 2021.
- A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “PlenOctrees for real-time rendering of neural radiance fields,” in ICCV, 2021.
- C. Sun, M. Sun, and H.-T. Chen, “Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction,” in CVPR, 2022.
- S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa, “Plenoxels: Radiance fields without neural networks,” in CVPR, 2022.
- Z. Chen, T. Funkhouser, P. Hedman, and A. Tagliasacchi, “MobileNeRF: Exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures,” in CVPR, 2023.
- A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “Tensorf: Tensorial radiance fields,” in ECCV, 2022.
- H. Yan, C. Liu, C. Ma, and X. Mei, “PlenVDB: Memory efficient VDB-based radiance fields for fast training and rendering,” in CVPR, 2023.
- P. Wang, Y. Liu, Z. Chen, L. Liu, Z. Liu, T. Komura, C. Theobalt, and W. Wang, “F22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT-NeRF: Fast neural radiance field training with free camera trajectories,” in CVPR, 2023.
- M. Tancik, V. Casser, X. Yan, S. Pradhan, B. Mildenhall, P. P. Srinivasan, J. T. Barron, and H. Kretzschmar, “Block-NeRF: Scalable large scene neural view synthesis,” in CVPR, 2022.
- J. Ost, I. Laradji, A. Newell, Y. Bahat, and F. Heide, “Neural point light fields,” in CVPR, 2022.
- A. Kundu, K. Genova, X. Yin, A. Fathi, C. Pantofaru, L. J. Guibas, A. Tagliasacchi, F. Dellaert, and T. Funkhouser, “Panoptic neural fields: A semantic object-aware neural scene representation,” in CVPR, 2022.
- X. Zhang, A. Kundu, T. Funkhouser, L. Guibas, H. Su, and K. Genova, “Nerflets: Local radiance fields for efficient structure-aware 3D scene representation from 2D supervision,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
- N. Max, “Optical models for direct volume rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–108, 1995.
- Z. Hao, A. Mallya, S. Belongie, and M.-Y. Liu, “GANcraft: Unsupervised 3D neural rendering of minecraft worlds,” in ICCV, 2021.
- B. T. Phong, “Illumination for computer generated pictures,” Communications of ACM, pp. 95–101, 1998.
- D. P. Greenberg, K. E. Torrance, P. Shirley, J. Arvo, E. Lafortune, J. A. Ferwerda, B. Walter, B. Trumbore, S. Pattanaik, and S.-C. Foo, “A framework for realistic image synthesis,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 1997.
- X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Freeman, and J. T. Barron, “NeRFactor: Neural factorization of shape and reflectance under an unknown illumination,” TOG, vol. 40, no. 6, pp. 1–18, 2021.
- X. Chen and K. He, “Exploring simple siamese representation learning,” in CVPR, 2021.
- S. Fridovich-Keil, G. Meanti, F. R. Warburg, B. Recht, and A. Kanazawa, “K-planes: Explicit radiance fields in space, time, and appearance,” in CVPR, 2023.
- J. Kulhanek and T. Sattler, “Tetra-NeRF: Representing neural radiance fields using tetrahedra,” in ICCV, 2023.
- M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, T. Wang, A. Kristoffersen, J. Austin, K. Salahi, A. Ahuja, et al., “NeRFStudio: A modular framework for neural radiance field development,” in SIGGRAPH, 2023.
- L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance of the adaptive learning rate and beyond,” arXiv preprint arXiv:1908.03265, 2019.
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
- Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” TIP, vol. 13, no. 4, pp. 600–612, 2004.
- R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in CVPR, 2018.