Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Exploring Heterogeneity and Uncertainty for Graph-based Cognitive Diagnosis Models in Intelligent Education (2403.05559v2)

Published 15 Feb 2024 in cs.CY and cs.LG

Abstract: Graph-based Cognitive Diagnosis (CD) has attracted much research interest due to its strong ability on inferring students' proficiency levels on knowledge concepts. While graph-based CD models have demonstrated remarkable performance, we contend that they still cannot achieve optimal performance due to the neglect of edge heterogeneity and uncertainty. Edges involve both correct and incorrect response logs, indicating heterogeneity. Meanwhile, a response log can have uncertain semantic meanings, e.g., a correct log can indicate true mastery or fortunate guessing, and a wrong log can indicate a lack of understanding or a careless mistake. In this paper, we propose an Informative Semantic-aware Graph-based Cognitive Diagnosis model (ISG-CD), which focuses on how to utilize the heterogeneous graph in CD and minimize effects of uncertain edges. Specifically, to explore heterogeneity, we propose a semantic-aware graph neural networks based CD model. To minimize effects of edge uncertainty, we propose an Informative Edge Differentiation layer from an information bottleneck perspective, which suggests keeping a minimal yet sufficient reliable graph for CD in an unsupervised way. We formulate this process as maximizing mutual information between the reliable graph and response logs, while minimizing mutual information between the reliable graph and the original graph. After that, we prove that mutual information maximization can be theoretically converted to the classic binary cross entropy loss function, while minimizing mutual information can be realized by the Hilbert-Schmidt Independence Criterion. Finally, we adopt an alternating training strategy for optimizing learnable parameters of both the semantic-aware graph neural networks based CD model and the edge differentiation layer. Extensive experiments on three real-world datasets have demonstrated the effectiveness of ISG-CD.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: