Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Execution of Learned Orientation Skills with Conic Control Barrier Functions (2403.05447v1)

Published 8 Mar 2024 in cs.RO

Abstract: In the field of Learning from Demonstration (LfD), Dynamical Systems (DSs) have gained significant attention due to their ability to generate real-time motions and reach predefined targets. However, the conventional convergence-centric behavior exhibited by DSs may fall short in safety-critical tasks, specifically, those requiring precise replication of demonstrated trajectories or strict adherence to constrained regions even in the presence of perturbations or human intervention. Moreover, existing DS research often assumes demonstrations solely in Euclidean space, overlooking the crucial aspect of orientation in various applications. To alleviate these shortcomings, we present an innovative approach geared toward ensuring the safe execution of learned orientation skills within constrained regions surrounding a reference trajectory. This involves learning a stable DS on SO(3), extracting time-varying conic constraints from the variability observed in expert demonstrations, and bounding the evolution of the DS with Conic Control Barrier Function (CCBF) to fulfill the constraints. We validated our approach through extensive evaluation in simulation and showcased its effectiveness for a cutting skill in the context of assisted teleoperation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Survey: Robot programming by demonstration,” Springrer, Tech. Rep., 2008.
  2. S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynamical systems with gaussian mixture models,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 943–957, 2011.
  3. N. Figueroa and A. Billard, “Locally active globally stable dynamical systems: Theory, learning, and experiments,” The International Journal of Robotics Research, vol. 41, no. 3, pp. 312–347, 2022.
  4. N. B. Figueroa Fernandez and A. Billard, “A physically-consistent bayesian non-parametric mixture model for dynamical system learning,” Proceedings of Machine Learning Research, 2018.
  5. T. Ibuki, S. Wilson, A. D. Ames, and M. Egerstedt, “Distributed collision-free motion coordination on a sphere: A conic control barrier function approach,” IEEE Control Systems Letters, vol. 4, no. 4, pp. 976–981, 2020.
  6. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical movement primitives: learning attractor models for motor behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.
  7. M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel, “Dynamic movement primitives in robotics: A tutorial survey,” The International Journal of Robotics Research, 2023.
  8. M. J. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. G. Caldwell, “An approach for imitation learning on riemannian manifolds,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1240–1247, 2017.
  9. F. J. Abu-Dakka, M. Saveriano, and V. Kyrki, “A unified formulation of geometry-aware dynamic movement primitives,” arXiv preprint arXiv:2203.03374, 2022.
  10. M. Saveriano, F. J. Abu-Dakka, and V. Kyrki, “Learning stable robotic skills on riemannian manifolds,” Robotics and Autonomous Systems, p. 104510, 2023.
  11. A. L. P. Ureche, K. Umezawa, Y. Nakamura, and A. Billard, “Task parameterization using continuous constraints extracted from human demonstrations,” IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1458–1471, 2015.
  12. M. Menner, P. Worsnop, and M. N. Zeilinger, “Constrained inverse optimal control with application to a human manipulation task,” IEEE Transactions on Control Systems Technology, vol. 29, no. 2, pp. 826–834, 2019.
  13. M. Saveriano and D. Lee, “Learning barrier functions for constrained motion planning with dynamical systems,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 112–119.
  14. M. Davoodi, A. Iqbal, J. M. Cloud, W. J. Beksi, and N. R. Gans, “Probabilistic movement primitive control via control barrier functions,” in 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE).   IEEE, 2021, pp. 697–703.
  15. G. Sutanto, I. R. Fernández, P. Englert, R. K. Ramachandran, and G. Sukhatme, “Learning equality constraints for motion planning on manifolds,” in Conference on Robot Learning.   PMLR, 2021, pp. 2292–2305.
  16. N. Mehr, R. Horowitz, and A. D. Dragan, “Inferring and assisting with constraints in shared autonomy,” in 2016 IEEE 55th Conference on Decision and Control (CDC).   IEEE, 2016, pp. 6689–6696.
  17. C. Pérez-D’Arpino and J. A. Shah, “C-learn: Learning geometric constraints from demonstrations for multi-step manipulation in shared autonomy,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 4058–4065.
  18. G. Chou, D. Berenson, and N. Ozay, “Learning constraints from demonstrations with grid and parametric representations,” The International Journal of Robotics Research, vol. 40, no. 10-11, pp. 1255–1283, 2021.
  19. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in 2019 18th European control conference (ECC).   IEEE, 2019, pp. 3420–3431.
  20. M. Igarashi, I. Tezuka, and H. Nakamura, “Time-varying control barrier function and its application to environment-adaptive human assist control,” IFAC Symposium on Nonlinear Control Systems, vol. 52, no. 16, pp. 735–740, 2019.
  21. G. Wu and K. Sreenath, “Safety-critical geometric control for systems on manifolds subject to time-varying constraints,” IEEE Transactions on Automatic Control (TAC), in review, 2016.
  22. X. Tan and D. V. Dimarogonas, “Construction of control barrier function and 𝒞2superscript𝒞2\mathcal{C}^{2}caligraphic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT reference trajectory for constrained attitude maneuvers,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 3329–3334.
  23. L. B. Rosenberg, “Virtual fixtures: Perceptual tools for telerobotic manipulation,” in Proceedings of IEEE virtual reality annual international symposium.   Ieee, 1993, pp. 76–82.
  24. M. Ewerton, O. Arenz, and J. Peters, “Assisted teleoperation in changing environments with a mixture of virtual guides,” Advanced Robotics, vol. 34, no. 18, pp. 1157–1170, 2020.
  25. A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism for shared control,” The International Journal of Robotics Research, vol. 32, no. 7, pp. 790–805, 2013.
  26. S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, and J. A. Bagnell, “Shared autonomy via hindsight optimization for teleoperation and teaming,” The International Journal of Robotics Research, vol. 37, no. 7, pp. 717–742, 2018.
  27. I. Havoutis and S. Calinon, “Learning assistive teleoperation behaviors from demonstration,” in 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).   IEEE, 2016, pp. 258–263.
  28. ——, “Supervisory teleoperation with online learning and optimal control,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 1534–1540.
  29. C. E. Mower, J. Moura, and S. Vijayakumar, “Skill-based shared control.” in Robotics: Science and Systems, 2021, pp. 1–10.
  30. L. Lindemann and D. V. Dimarogonas, “Control barrier functions for signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1, pp. 96–101, 2018.
  31. S. Berkane and A. Tayebi, “Construction of synergistic potential functions on so(3) with application to velocity-free hybrid attitude stabilization,” IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 495–501, 2017.
  32. A. Shukla and A. Billard, “Coupled dynamical system based arm–hand grasping model for learning fast adaptation strategies,” Robotics and Autonomous Systems, vol. 60, no. 3, pp. 424–440, 2012.
Citations (1)

Summary

We haven't generated a summary for this paper yet.