Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Modeling of progressive high-cycle fatigue in composite laminates accounting for local stress ratios (2403.05356v1)

Published 8 Mar 2024 in cs.CE

Abstract: A numerical framework for simulating progressive failure under high-cycle fatigue loading is validated against experiments of composite quasi-isotropic open-hole laminates. Transverse matrix cracking and delamination are modeled with a mixed-mode fatigue cohesive zone model, covering crack initiation and propagation. Furthermore, XFEM is used for simulating transverse matrix cracks and splits at arbitrary locations. An adaptive cycle jump approach is employed for efficiently simulating high-cycle fatigue while accounting for local stress ratio variations in the presence of thermal residual stresses. The cycle jump scheme is integrated in the XFEM framework, where the local stress ratio is used to determine the insertion of cracks and to propagate fatigue damage. The fatigue cohesive zone model is based on S-N curves and requires static material properties and only a few fatigue parameters, calibrated on simple fracture testing specimens. The simulations demonstrate a good correspondence with experiments in terms of fatigue life and damage evolution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. doi:10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D.
  2. doi:10.1016/j.compositesa.2006.11.009.
  3. doi:10.1016/j.ijfatigue.2010.04.006.
  4. doi:10.1016/j.ijsolstr.2012.03.034.
  5. doi:10.1016/j.ijfatigue.2015.07.003.
  6. doi:10.1002/nme.5117.
  7. doi:10.1016/j.compositesa.2017.05.035.
  8. doi:10.1002/nme.5463.
  9. doi:10.1007/s10443-016-9543-y.
  10. doi:10.1016/j.compstruct.2016.10.041.
  11. doi:10.1016/j.tafmec.2020.102645.
  12. doi:10.1016/j.compositesa.2019.04.026.
  13. doi:10.1016/j.compositesa.2022.107036.
  14. doi:10.1016/0266-3538(92)90109-G.
  15. doi:10.1016/j.compstruct.2013.05.033.
  16. doi:10.1016/j.compositesa.2014.11.013.
  17. doi:10.1046/j.1460-2695.2000.00262.x.
  18. doi:10.1016/j.compstruct.2013.05.019.
  19. doi:10.1177/0021998316681831.
  20. doi:10.1016/j.compositesa.2018.02.008.
  21. doi:10.1016/j.compscitech.2022.109587.
  22. doi:10.1016/j.compositesa.2022.107199.
  23. doi:10.1016/j.ijsolstr.2023.112158.
  24. doi:10.1016/j.mechmat.2020.103686.
  25. doi:10.3390/jcs7120516.
  26. doi:10.1016/j.tafmec.2020.102499.
  27. doi:10.1016/j.engfracmech.2023.109232.
  28. doi:10.1111/FFE.13712.
  29. doi:10.1016/j.compstruct.2021.114494.
  30. doi:10.1016/j.compositesa.2022.106862.
  31. doi:10.1016/j.engfracmech.2023.109786.
  32. doi:10.1007/s10704-009-9344-5.
  33. doi:10.1016/j.engfracmech.2009.11.010.
  34. doi:10.1016/j.mechmat.2005.10.003.
  35. doi:10.1016/j.compstruct.2010.01.012.
  36. doi:10.1016/j.compstruct.2017.10.017.
  37. doi:10.1016/j.cma.2003.12.041.
  38. doi:10.1007/s11831-012-9076-y.
  39. doi:10.1016/j.compositesa.2010.08.015.
  40. doi:10.1016/j.compstruct.2011.03.023.
  41. doi:10.2514/1.J058465.
  42. doi:10.1016/S1359-8368(01)00038-5.
  43. doi:10.1016/j.ijfatigue.2015.08.029.
  44. doi:10.1016/j.compstruct.2016.02.060.
  45. doi:10.1016/j.ijfatigue.2020.105500.
  46. doi:10.1002/nme.143.
  47. doi:10.1016/j.compositesa.2006.07.008.
  48. doi:10.1177/0021998311410473.
  49. doi:10.1002/nme.1842.
  50. doi:10.1177/0021998320914065.
  51. doi:10.1016/j.compositesa.2010.07.005.
  52. doi:10.1177/002199838702100402.
  53. doi:10.1016/j.compstruct.2014.06.014.
  54. doi:10.1016/j.compositesa.2020.105864.
  55. doi:10.1016/j.compstruct.2021.113592.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube