Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fine-tuning a Multiple Instance Learning Feature Extractor with Masked Context Modelling and Knowledge Distillation (2403.05325v1)

Published 8 Mar 2024 in cs.CV

Abstract: The first step in Multiple Instance Learning (MIL) algorithms for Whole Slide Image (WSI) classification consists of tiling the input image into smaller patches and computing their feature vectors produced by a pre-trained feature extractor model. Feature extractor models that were pre-trained with supervision on ImageNet have proven to transfer well to this domain, however, this pre-training task does not take into account that visual information in neighboring patches is highly correlated. Based on this observation, we propose to increase downstream MIL classification by fine-tuning the feature extractor model using \textit{Masked Context Modelling with Knowledge Distillation}. In this task, the feature extractor model is fine-tuned by predicting masked patches in a bigger context window. Since reconstructing the input image would require a powerful image generation model, and our goal is not to generate realistically looking image patches, we predict instead the feature vectors produced by a larger teacher network. A single epoch of the proposed task suffices to increase the downstream performance of the feature-extractor model when used in a MIL scenario, even capable of outperforming the downstream performance of the teacher model, while being considerably smaller and requiring a fraction of its compute.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.