Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Algorithms for Personalized PageRank Computation: A Survey (2403.05198v1)

Published 8 Mar 2024 in cs.DS

Abstract: Personalized PageRank (PPR) is a traditional measure for node proximity on large graphs. For a pair of nodes $s$ and $t$, the PPR value $\pi_s(t)$ equals the probability that an $\alpha$-discounted random walk from $s$ terminates at $t$ and reflects the importance between $s$ and $t$ in a bidirectional way. As a generalization of Google's celebrated PageRank centrality, PPR has been extensively studied and has found multifaceted applications in many fields, such as network analysis, graph mining, and graph machine learning. Despite numerous studies devoted to PPR over the decades, efficient computation of PPR remains a challenging problem, and there is a dearth of systematic summaries and comparisons of existing algorithms. In this paper, we recap several frequently used techniques for PPR computation and conduct a comprehensive survey of various recent PPR algorithms from an algorithmic perspective. We classify these approaches based on the types of queries they address and review their methodologies and contributions. We also discuss some representative algorithms for computing PPR on dynamic graphs and in parallel or distributed environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (128)
  1. S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” Comput. Netw., vol. 30, no. 1-7, pp. 107–117, 1998.
  2. S. Wang and Y. Tao, “Efficient algorithms for finding approximate heavy hitters in personalized pageranks,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2018, pp. 1113–1127.
  3. X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. F. M. Ng, B. Liu, P. S. Yu, Z. Zhou, M. S. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst., vol. 14, no. 1, pp. 1–37, 2008.
  4. D. F. Gleich, “Pagerank beyond the web,” SIAM Rev., vol. 57, no. 3, pp. 321–363, 2015.
  5. R. Andersen, F. R. K. Chung, and K. J. Lang, “Local graph partitioning using pagerank vectors,” in Proc. 47th Annu. IEEE Symp. Found. Comput. Sci., 2006, pp. 475–486.
  6. ——, “Using pagerank to locally partition a graph,” Internet Math., vol. 4, no. 1, pp. 35–64, 2007.
  7. H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-order graph clustering,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2017, pp. 555–564.
  8. R. Yang, X. Xiao, Z. Wei, S. S. Bhowmick, J. Zhao, and R. Li, “Efficient estimation of heat kernel pagerank for local clustering,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2019, pp. 1339–1356.
  9. K. Fountoulakis, F. Roosta-Khorasani, J. Shun, X. Cheng, and M. W. Mahoney, “Variational perspective on local graph clustering,” Math. Program., vol. 174, no. 1-2, pp. 553–573, 2019.
  10. Y. Chang, H. Ma, L. Chang, and Z. Li, “Community detection with attributed random walk via seed replacement,” Frontiers Comput. Sci., vol. 16, no. 5, p. 165324, 2022.
  11. Z. Yuan, Z. Wei, F. Lv, and J. Wen, “Index-free triangle-based graph local clustering,” Frontiers Comput. Sci., vol. 18, no. 3, p. 183404, 2024.
  12. M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity preserving graph embedding,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016, pp. 1105–1114.
  13. C. Zhou, Y. Liu, X. Liu, Z. Liu, and J. Gao, “Scalable graph embedding for asymmetric proximity,” in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 2942–2948.
  14. A. Tsitsulin, D. Mottin, P. Karras, and E. Müller, “Verse: Versatile graph embeddings from similarity measures,” in Proc. Int. Conf. World Wide Web, 2018, pp. 539–548.
  15. Y. Yin and Z. Wei, “Scalable graph embeddings via sparse transpose proximities,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2019, pp. 1429–1437.
  16. R. Yang, J. Shi, X. Xiao, Y. Yang, and S. S. Bhowmick, “Homogeneous network embedding for massive graphs via reweighted personalized pagerank,” Proc. VLDB Endowment, vol. 13, no. 5, pp. 670–683, 2020.
  17. A. Tsitsulin, M. Munkhoeva, D. Mottin, P. Karras, I. V. Oseledets, and E. Müller, “Frede: Anytime graph embeddings,” Proc. VLDB Endowment, vol. 14, no. 6, pp. 1102–1110, 2021.
  18. J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural networks meet personalized pagerank,” in Proc. 7th Int. Conf. Learn. Representations, 2019.
  19. A. Bojchevski, J. Klicpera, B. Perozzi, A. Kapoor, M. Blais, B. Rózemberczki, M. Lukasik, and S. Günnemann, “Scaling graph neural networks with approximate pagerank,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2020, pp. 2464–2473.
  20. M. Chen, Z. Wei, B. Ding, Y. Li, Y. Yuan, X. Du, and J. Wen, “Scalable graph neural networks via bidirectional propagation,” in Proc. Annu. Conf. Neural Inf. Process. Syst., 2020.
  21. H. Wang, M. He, Z. Wei, S. Wang, Y. Yuan, X. Du, and J. Wen, “Approximate graph propagation,” in Proc. 27th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2021, pp. 1686–1696.
  22. Y. Zhang, C. Li, C. Xie, and H. Chen, “Accuracy estimation of link-based similarity measures and its application,” Frontiers Comput. Sci., vol. 10, no. 1, pp. 113–123, 2016.
  23. A. Epasto, V. Mirrokni, B. Perozzi, A. Tsitsulin, and P. Zhong, “Differentially private graph learning via sensitivity-bounded personalized pagerank,” in Proc. Annu. Conf. Neural Inf. Process. Syst., 2022.
  24. R. Yang, “Efficient and effective similarity search over bipartite graphs,” in ACM Web Conf., 2022, pp. 308–318.
  25. S. Zhang, R. Yang, X. Xiao, X. Yan, and B. Tang, “Effective and efficient pagerank-based positioning for graph visualization,” Proc. ACM Manage. Data, vol. 1, no. 1, pp. 76:1–76:27, 2023.
  26. C. Moler, “The world’s largest matrix computation,” Matlab News Notes, pp. 12–13, 2002.
  27. P. Berkhin, “Survey: A survey on pagerank computing,” Internet Math., vol. 2, no. 1, pp. 73–120, 2005.
  28. F. Chung, “A brief survey of pagerank algorithms,” IEEE Trans. Netw. Sci. Eng., vol. 1, no. 1, pp. 38–42, 2014.
  29. S. Park, W. Lee, B. Choe, and S. Lee, “A survey on personalized pagerank computation algorithms,” IEEE Access, vol. 7, pp. 163 049–163 062, 2019.
  30. K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova, “Monte carlo methods in pagerank computation: When one iteration is sufficient,” SIAM J. Numer. Anal., vol. 45, no. 2, pp. 890–904, 2007.
  31. M. Bianchini, M. Gori, and F. Scarselli, “Inside pagerank,” ACM Trans. Internet Technol., vol. 5, no. 1, pp. 92–128, 2005.
  32. G. Jeh and J. Widom, “Scaling personalized web search,” in Proc. Int. Conf. World Wide Web, 2003, pp. 271–279.
  33. K. Avrachenkov, P. Gonçalves, and M. Sokol, “On the choice of kernel and labelled data in semi-supervised learning methods,” in Proc. 10th Int. Workshop Algorithms Models Web Graph, vol. 8305, 2013, pp. 56–67.
  34. A. N. Langville and C. D. Meyer, “Survey: Deeper inside pagerank,” Internet Math., vol. 1, no. 3, pp. 335–380, 2003.
  35. D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós, “Towards scaling fully personalized pagerank: Algorithms, lower bounds, and experiments,” Internet Math., vol. 2, no. 3, pp. 333–358, 2005.
  36. R. Andersen, C. Borgs, J. T. Chayes, J. E. Hopcroft, V. S. Mirrokni, and S. Teng, “Local computation of pagerank contributions,” in Proc. 5th Int. Workshop Algorithms Models Web Graph, vol. 4863, 2007, pp. 150–165.
  37. ——, “Local computation of pagerank contributions,” Internet Math., vol. 5, no. 1, pp. 23–45, 2008.
  38. Z. Wei, X. He, X. Xiao, S. Wang, S. Shang, and J. Wen, “Topppr: Top-k personalized pagerank queries with precision guarantees on large graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2018, pp. 441–456.
  39. M. Liao, R. Li, Q. Dai, and G. Wang, “Efficient personalized pagerank computation: A spanning forests sampling based approach,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2022, pp. 2048–2061.
  40. M. Yoon, J. Jung, and U. Kang, “Tpa: Fast, scalable, and accurate method for approximate random walk with restart on billion scale graphs,” in Proc. 34th Int. Conf. Data Eng., 2018, pp. 1132–1143.
  41. Z. Chen, X. Guo, B. Zhou, D. Yang, and S. Skiena, “Accelerating personalized pagerank vector computation,” in Proc. 29th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2023, pp. 262–273.
  42. H. Wu, J. Gan, Z. Wei, and R. Zhang, “Unifying the global and local approaches: An efficient power iteration with forward push,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2021, pp. 1996–2008.
  43. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub, “Extrapolation methods for accelerating pagerank computations,” in Proc. Int. Conf. World Wide Web, 2003, pp. 261–270.
  44. A. Z. Broder, R. Lempel, F. Maghoul, and J. O. Pedersen, “Efficient pagerank approximation via graph aggregation,” in Proc. Int. Conf. World Wide Web, 2004, pp. 484–485.
  45. S. Kamvar, T. Haveliwala, and G. Golub, “Adaptive methods for the computation of pagerank,” Linear Algebra Appl., vol. 386, pp. 51–65, 2004.
  46. G. Wu and Y. Wei, “Arnoldi versus gmres for computing pagerank: A theoretical contribution to google’s pagerank problem,” ACM Trans. Inf. Syst., vol. 28, no. 3, pp. 11:1–11:28, 2010.
  47. H. Tong, C. Faloutsos, and J. Pan, “Fast random walk with restart and its applications,” in Proc. 6th Int. Conf. Data Mining, 2006, pp. 613–622.
  48. D. F. Gleich and M. Polito, “Approximating personalized pagerank with minimal use of web graph data,” Internet Math., vol. 3, no. 3, pp. 257–294, 2007.
  49. T. Sarlós, A. A. Benczúr, K. Csalogány, D. Fogaras, and B. Rácz, “To randomize or not to randomize: space optimal summaries for hyperlink analysis,” in Proc. Int. Conf. World Wide Web, 2006, pp. 297–306.
  50. F. Zhu, Y. Fang, K. C. Chang, and J. Ying, “Incremental and accuracy-aware personalized pagerank through scheduled approximation,” Proc. VLDB Endowment, vol. 6, no. 6, pp. 481–492, 2013.
  51. T. Maehara, T. Akiba, Y. Iwata, and K. Kawarabayashi, “Computing personalized pagerank quickly by exploiting graph structures,” Proc. VLDB Endowment, vol. 7, no. 12, pp. 1023–1034, 2014.
  52. K. Shin, J. Jung, L. Sael, and U. Kang, “Bear: Block elimination approach for random walk with restart on large graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2015, pp. 1571–1585.
  53. J. Jung, K. Shin, L. Sael, and U. Kang, “Random walk with restart on large graphs using block elimination,” ACM Trans. Database Syst., vol. 41, no. 2, pp. 12:1–12:43, 2016.
  54. J. Jung, N. Park, L. Sael, and U. Kang, “Bepi: Fast and memory-efficient method for billion-scale random walk with restart,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2017, pp. 789–804.
  55. M. Coşkun, A. Grama, and M. Koyutürk, “Efficient processing of network proximity queries via chebyshev acceleration,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016, pp. 1515–1524.
  56. P. Berkhin, “Bookmark-coloring algorithm for personalized pagerank computing,” Internet Math., vol. 3, no. 1, pp. 41–62, 2006.
  57. S. Chakrabarti, “Dynamic personalized pagerank in entity-relation graphs,” in Proc. Int. Conf. World Wide Web, 2007, pp. 571–580.
  58. F. C. Graham and W. Zhao, “A sharp pagerank algorithm with applications to edge ranking and graph sparsification,” in Proc. 7th Int. Workshop Algorithms Models Web Graph, vol. 6516, 2010, pp. 2–14.
  59. S. Wang, R. Yang, X. Xiao, Z. Wei, and Y. Yang, “Fora: Simple and effective approximate single-source personalized pagerank,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2017, pp. 505–514.
  60. S. Wang, R. Yang, R. Wang, X. Xiao, Z. Wei, W. Lin, Y. Yang, and N. Tang, “Efficient algorithms for approximate single-source personalized pagerank queries,” ACM Trans. Database Syst., vol. 44, no. 4, pp. 18:1–18:37, 2019.
  61. S. Luo, X. Xiao, W. Lin, and B. Kao, “Efficient batch one-hop personalized pageranks,” in Proc. 35th Int. Conf. Data Eng., 2019, pp. 1562–1565.
  62. ——, “Baton: Batch one-hop personalized pageranks with efficiency and accuracy,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 10, pp. 1897–1908, 2020.
  63. R. Wang, S. Wang, and X. Zhou, “Parallelizing approximate single-source personalized pagerank queries on shared memory,” VLDB J., vol. 28, no. 6, pp. 923–940, 2019.
  64. D. Lin, R. C. Wong, M. Xie, and V. J. Wei, “Index-free approach with theoretical guarantee for efficient random walk with restart query,” in Proc. 36th Int. Conf. Data Eng., 2020, pp. 913–924.
  65. S. Luo, “Improved communication cost in distributed pagerank computation - a theoretical study,” in Proc. 37th Int. Conf. Mach. Learn., vol. 119, 2020, pp. 6459–6467.
  66. G. Hou, X. Chen, S. Wang, and Z. Wei, “Massively parallel algorithms for personalized pagerank,” Proc. VLDB Endowment, vol. 14, no. 9, pp. 1668–1680, 2021.
  67. D. Mo and S. Luo, “Agenda: Robust personalized pageranks in evolving graphs,” in Proc. 30th ACM Int. Conf. Inf. Knowl. Manage., 2021, pp. 1315–1324.
  68. M. Liao, R. Li, Q. Dai, H. Chen, H. Qin, and G. Wang, “Efficient personalized pagerank computation: The power of variance-reduced monte carlo approaches,” Proc. ACM Manage. Data, vol. 1, no. 2, pp. 160:1–160:26, 2023.
  69. G. Hou, Q. Guo, F. Zhang, S. Wang, and Z. Wei, “Personalized pagerank on evolving graphs with an incremental index-update scheme,” Proc. ACM Manage. Data, vol. 1, no. 1, pp. 25:1–25:26, 2023.
  70. K. Fountoulakis and S. Yang, “Open problem: Running time complexity of accelerated ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-regularized pagerank,” in Annu. Conf. Learn. Theory, 2022, pp. 5630–5632.
  71. D. Martínez-Rubio, E. S. Wirth, and S. Pokutta, “Accelerated and sparse algorithms for approximate personalized pagerank and beyond,” in Annu. Conf. Learn. Theory, vol. 195, 2023, pp. 2852–2876.
  72. P. Lofgren and A. Goel, “Personalized pagerank to a target node,” CoRR, vol. abs/1304.4658, 2013.
  73. H. Wang, Z. Wei, J. Gan, S. Wang, and Z. Huang, “Personalized pagerank to a target node, revisited,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2020, pp. 657–667.
  74. Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa, and M. Onizuka, “Efficient personalized pagerank with accuracy assurance,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012, pp. 15–23.
  75. X. Zhao, A. Chang, A. D. Sarma, H. Zheng, and B. Y. Zhao, “On the embeddability of random walk distances,” Proc. VLDB Endowment, vol. 6, no. 14, pp. 1690–1701, 2013.
  76. P. Lofgren, S. Banerjee, A. Goel, and S. Comandur, “Fast-ppr: scaling personalized pagerank estimation for large graphs,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 1436–1445.
  77. P. Lofgren, S. Banerjee, and A. Goel, “Personalized pagerank estimation and search: A bidirectional approach,” in Proc. 9th ACM Int. Conf. Web Search Data Mining, 2016, pp. 163–172.
  78. ——, “Bidirectional pagerank estimation: From average-case to worst-case,” in Proc. 12th Int. Workshop Algorithms Models Web Graph, vol. 9479, 2015, pp. 164–176.
  79. S. Wang, Y. Tang, X. Xiao, Y. Yang, and Z. Li, “Hubppr: Effective indexing for approximate personalized pagerank,” Proc. VLDB Endowment, vol. 10, no. 3, pp. 205–216, 2016.
  80. M. Bressan, E. Peserico, and L. Pretto, “Sublinear algorithms for local graph centrality estimation,” in Proc. 59th Annu. IEEE Symp. Found. Comput. Sci., 2018, pp. 709–718.
  81. ——, “Sublinear algorithms for local graph-centrality estimation,” SIAM J. Comput., vol. 52, no. 4, pp. 968–1008, 2023.
  82. Y. Chen, Q. Gan, and T. Suel, “Local methods for estimating pagerank values,” in Proc. 13th ACM Int. Conf. Inf. Knowl. Manage., 2004, pp. 381–389.
  83. Z. Bar-Yossef and L. Mashiach, “Local approximation of pagerank and reverse pagerank,” in Proc. 17th ACM Int. Conf. Inf. Knowl. Manage., 2008, pp. 279–288.
  84. M. Bressan, E. Peserico, and L. Pretto, “The power of local information in pagerank,” in Proc. Int. Conf. World Wide Web, 2013, pp. 179–180.
  85. H. Wang and Z. Wei, “Estimating single-node pagerank in O~⁢(min⁡{dt,m})~𝑂subscript𝑑𝑡𝑚\widetilde{O}\left(\min\big{\{}d_{t},\sqrt{m}\big{\}}\right)over~ start_ARG italic_O end_ARG ( roman_min { italic_d start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , square-root start_ARG italic_m end_ARG } ) time,” Proc. VLDB Endowment, vol. 16, no. 11, pp. 2949–2961, 2023.
  86. Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa, “Fast and exact top-k search for random walk with restart,” Proc. VLDB Endowment, vol. 5, no. 5, pp. 442–453, 2012.
  87. Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima, and M. Onizuka, “Efficient ad-hoc search for personalized pagerank,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013, pp. 445–456.
  88. ——, “Fast and exact top-k algorithm for pagerank,” in Proc. 27th AAAI Conf. Artif. Intell., 2013, pp. 1106–1112.
  89. Y. Wu, R. Jin, and X. Zhang, “Fast and unified local search for random walk based k-nearest-neighbor query in large graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2014, pp. 1139–1150.
  90. M. S. Gupta, A. Pathak, and S. Chakrabarti, “Fast algorithms for topk personalized pagerank queries,” in Proc. Int. Conf. World Wide Web, 2008, pp. 1225–1226.
  91. S. Chakrabarti, A. Pathak, and M. Gupta, “Index design and query processing for graph conductance search,” VLDB J., vol. 20, no. 3, pp. 445–470, 2011.
  92. A. Pathak, S. Chakrabarti, and M. S. Gupta, “Index design for dynamic personalized pagerank,” in Proc. 24th Int. Conf. Data Eng., 2008, pp. 1489–1491.
  93. K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova, and M. Sokol, “Quick detection of top-k personalized pagerank lists,” in Proc. 8th Int. Workshop Algorithms Models Web Graph, vol. 6732, 2011, pp. 50–61.
  94. J. V. Davis and I. S. Dhillon, “Estimating the global pagerank of web communities,” in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2006, pp. 116–125.
  95. M. Bressan and L. Pretto, “Local computation of pagerank: the ranking side,” in Proc. 20th ACM Int. Conf. Inf. Knowl. Manage., 2011, pp. 631–640.
  96. C. Borgs, M. Brautbar, J. T. Chayes, and S. Teng, “A sublinear time algorithm for pagerank computations,” in Proc. 9th Int. Workshop Algorithms Models Web Graph, vol. 7323, 2012, pp. 41–53.
  97. ——, “Multiscale matrix sampling and sublinear-time pagerank computation,” Internet Math., vol. 10, no. 1-2, pp. 20–48, 2014.
  98. A. W. Yu, N. Mamoulis, and H. Su, “Reverse top-k search using random walk with restart,” Proc. VLDB Endowment, vol. 7, no. 5, pp. 401–412, 2014.
  99. P. Sarkar and A. W. Moore, “Fast nearest-neighbor search in disk-resident graphs,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2010, pp. 513–522.
  100. B. Bahmani, A. Chowdhury, and A. Goel, “Fast incremental and personalized pagerank,” Proc. VLDB Endowment, vol. 4, no. 3, pp. 173–184, 2010.
  101. H. Zhang, P. Lofgren, and A. Goel, “Approximate personalized pagerank on dynamic graphs,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016, pp. 1315–1324.
  102. B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal, “Pagerank on an evolving graph,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012, pp. 24–32.
  103. W. Yu and X. Lin, “Irwr: incremental random walk with restart,” in Proc. 36th ACM SIGIR Int. Conf. Res. Develop. Inf. Retrieval, 2013, pp. 1017–1020.
  104. W. Yu and J. A. McCann, “Random walk with restart over dynamic graphs,” in Proc. 16th Int. Conf. Data Mining, 2016, pp. 589–598.
  105. N. Ohsaka, T. Maehara, and K. Kawarabayashi, “Efficient pagerank tracking in evolving networks,” in Proc. 21st ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 875–884.
  106. M. Yoon, W. Jin, and U. Kang, “Fast and accurate random walk with restart on dynamic graphs with guarantees,” in Proc. Int. Conf. World Wide Web, 2018, pp. 409–418.
  107. D. Mo and S. Luo, “Single-source personalized pageranks with workload robustness,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 6, pp. 6320–6334, 2023.
  108. K. Sankaralingam, S. Sethumadhavan, and J. C. Browne, “Distributed pagerank for p2p systems,” in 12th Int. Symp. High-Perform. Distrib. Comput., 2003, pp. 58–69.
  109. S. Shi, J. Yu, G. Yang, and D. Wang, “Distributed page ranking in structured p2p networks,” in 32nd Int. Conf. Parallel Process., 2003, pp. 179–186.
  110. Y. Wang and D. J. DeWitt, “Computing pagerank in a distributed internet search engine system,” in Proc. 30th Int. Conf. Very Large Data Bases, 2004, pp. 420–431.
  111. J. X. Parreira, D. Donato, S. Michel, and G. Weikum, “Efficient and decentralized pagerank approximation in a peer-to-peer web search network,” in Proc. 32nd Int. Conf. Very Large Data Bases, 2006, pp. 415–426.
  112. Y. Zhu, S. Ye, and X. Li, “Distributed pagerank computation based on iterative aggregation-disaggregation methods,” in Proc. 14th ACM Int. Conf. Inf. Knowl. Manage., 2005, pp. 578–585.
  113. B. Bahmani, K. Chakrabarti, and D. Xin, “Fast personalized pagerank on mapreduce,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011, pp. 973–984.
  114. I. Mitliagkas, M. Borokhovich, A. G. Dimakis, and C. Caramanis, “Frogwild! - fast pagerank approximations on graph engines,” Proc. VLDB Endowment, vol. 8, no. 8, pp. 874–885, 2015.
  115. Q. Liu, Z. Li, J. C. S. Lui, and J. Cheng, “Powerwalk: Scalable personalized pagerank via random walks with vertex-centric decomposition,” in Proc. 25th ACM Int. Conf. Inf. Knowl. Manage., 2016, pp. 195–204.
  116. T. Guo, X. Cao, G. Cong, J. Lu, and X. Lin, “Distributed algorithms on exact personalized pagerank,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2017, pp. 479–494.
  117. W. Guo, Y. Li, M. Sha, and K. Tan, “Parallel personalized pagerank on dynamic graphs,” Proc. VLDB Endowment, vol. 11, no. 1, pp. 93–106, 2017.
  118. J. Shi, R. Yang, T. Jin, X. Xiao, and Y. Yang, “Realtime top-k personalized pagerank over large graphs on gpus,” Proc. VLDB Endowment, vol. 13, no. 1, pp. 15–28, 2019.
  119. W. Lin, “Distributed algorithms for fully personalized pagerank on large graphs,” in Proc. Int. Conf. World Wide Web, 2019, pp. 1084–1094.
  120. A. D. Sarma, A. R. Molla, G. Pandurangan, and E. Upfal, “Fast distributed pagerank computation,” Theor. Comput. Sci., vol. 561, pp. 113–121, 2015.
  121. S. Luo, “Distributed pagerank computation: An improved theoretical study,” in Proc. 33rd AAAI Conf. Artif. Intell., 2019, pp. 4496–4503.
  122. J. Łącki, S. Mitrović, K. Onak, and P. Sankowski, “Walking randomly, massively, and efficiently,” in Proc. 52nd Annu. ACM SIGACT Symp. Theory Comput., 2020, pp. 364–377.
  123. M. Kapralov, S. Lattanzi, N. Nouri, and J. Tardos, “Efficient and local parallel random walks,” in Proc. Annu. Conf. Neural Inf. Process. Syst., 2021, pp. 21 375–21 387.
  124. W. Xie, D. Bindel, A. J. Demers, and J. Gehrke, “Edge-weighted personalized pagerank: Breaking A decade-old performance barrier,” in Proc. 21st ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 1325–1334.
  125. H. Wang, Z. Wei, J. Gan, Y. Yuan, X. Du, and J. Wen, “Edge-based local push for personalized pagerank,” Proc. VLDB Endowment, vol. 15, no. 7, pp. 1376–1389, 2022.
  126. A. D. Sarma, S. Gollapudi, and R. Panigrahy, “Estimating pagerank on graph streams,” in Proc. 27th ACM SIGMOD-SIGACT-SIGART Symp. Princ. Database Syst., 2008, pp. 69–78.
  127. ——, “Estimating pagerank on graph streams,” J. ACM, vol. 58, no. 3, pp. 13:1–13:19, 2011.
  128. J. Kallaugher, M. Kapralov, and E. Price, “Simulating random walks in random streams,” in Proc. ACM-SIAM Symp. Discrete Algorithms, 2022, pp. 3091–3126.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Mingji Yang (3 papers)
  2. Hanzhi Wang (16 papers)
  3. Zhewei Wei (68 papers)
  4. Sibo Wang (59 papers)
  5. Ji-Rong Wen (299 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com