Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models (2403.05160v3)

Published 8 Mar 2024 in cs.CV

Abstract: Recently, pathological diagnosis has achieved superior performance by combining deep learning models with the multiple instance learning (MIL) framework using whole slide images (WSIs). However, the giga-pixeled nature of WSIs poses a great challenge for efficient MIL. Existing studies either do not consider global dependencies among instances, or use approximations such as linear attentions to model the pair-to-pair instance interactions, which inevitably brings performance bottlenecks. To tackle this challenge, we propose a framework named MamMIL for WSI analysis by cooperating the selective structured state space model (i.e., Mamba) with MIL, enabling the modeling of global instance dependencies while maintaining linear complexity. Specifically, considering the irregularity of the tissue regions in WSIs, we represent each WSI as an undirected graph. To address the problem that Mamba can only process 1D sequences, we further propose a topology-aware scanning mechanism to serialize the WSI graphs while preserving the topological relationships among the instances. Finally, in order to further perceive the topological structures among the instances and incorporate short-range feature interactions, we propose an instance aggregation block based on graph neural networks. Experiments show that MamMIL can achieve advanced performance than the state-of-the-art frameworks. The code can be accessed at https://github.com/Vison307/MamMIL.

Citations (5)

Summary

We haven't generated a summary for this paper yet.