Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-Time Planning Under Uncertainty for AUVs Using Virtual Maps (2403.04936v1)

Published 7 Mar 2024 in cs.RO

Abstract: Reliable localization is an essential capability for marine robots navigating in GPS-denied environments. SLAM, commonly used to mitigate dead reckoning errors, still fails in feature-sparse environments or with limited-range sensors. Pose estimation can be improved by incorporating the uncertainty prediction of future poses into the planning process and choosing actions that reduce uncertainty. However, performing belief propagation is computationally costly, especially when operating in large-scale environments. This work proposes a computationally efficient planning under uncertainty frame-work suitable for large-scale, feature-sparse environments. Our strategy leverages SLAM graph and occupancy map data obtained from a prior exploration phase to create a virtual map, describing the uncertainty of each map cell using a multivariate Gaussian. The virtual map is then used as a cost map in the planning phase, and performing belief propagation at each step is avoided. A receding horizon planning strategy is implemented, managing a goal-reaching and uncertainty-reduction tradeoff. Simulation experiments in a realistic underwater environment validate this approach. Experimental comparisons against a full belief propagation approach and a standard shortest-distance approach are conducted.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. N. Palomeras, N. Hurtós, E. Vidal, and M. Carreras, “Autonomous exploration of complex underwater environments using a probabilistic next-best-view planner,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1619–1625, 2019.
  2. E. Pairet, J. D. Hernández, M. Carreras, Y. Petillot, and M. Lahijanian, “Online mapping and motion planning under uncertainty for safe navigation in unknown environments,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 3356–3378, 2022.
  3. W. Burgard, D. Fox, and S. Thrun, “Active mobile robot localization,” International Joint Conference on Artificial Intelligence, 1997.
  4. C. Papachristos, S. Khattak, and K. Alexis, “Uncertainty-aware receding horizon exploration and mapping using aerial robots,” IEEE International Conference on Robotics and Automation (ICRA), pp. 4568–4575, 2017.
  5. G. Costante, C. Forster, J. Delmerico, P. Valigi, and D. Scaramuzza, “Perception-aware path planning,” arXiv preprint arXiv:1605.04151, 2016.
  6. Z. Zhang and D. Scaramuzza, “Perception-aware receding horizon navigation for MAVs,” IEEE International Conference on Robotics and Automation (ICRA), pp. 2534–2541, 2018.
  7. S. Suresh, P. Sodhi, J. G. Mangelson, D. Wettergreen, and M. Kaess, “Active SLAM using 3D submap saliency for underwater volumetric exploration,” IEEE International Conference on Robotics and Automation (ICRA), pp. 3132–3138, 2020.
  8. I. Maurović, M. Seder, K. Lenac, and I. Petrović, “Path planning for active SLAM based on the D* algorithm with negative edge weights,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 8, pp. 1321–1331, 2018.
  9. F. Andrade, M. Llofriu, M. Marzoa Tanco, G. Trinidad Barnech, and G. Tejera, “Active localization strategy for hypotheses pruning in challenging environments,” Journal of Intelligent & Robotic Systems, 2022.
  10. J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Carlone, and J. A. Castellanos, “A survey on active simultaneous localization and mapping: State of the art and new frontiers,” IEEE Transactions on Robotics, vol. 39, no. 3, pp. 1686–1705, 2023.
  11. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially observable stochastic domains,” Artificial Intelligence, vol. 101, no. 1, pp. 99–134, 1998.
  12. S. Prentice and N. Roy, “The belief roadmap: Efficient planning in belief space by factoring the covariance,” The International Journal of Robotics Research, vol. 28, pp. 1448 – 1465, 2009.
  13. A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion planning under uncertainty,” IEEE International Conference on Robotics and Automation (ICRA), pp. 723–730, 2011.
  14. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.
  15. M. Nealson, Erik Corah and N. Michael, “Environment model adaptation for mobile robot exploration,” Autonomous Robots, vol. 42, 2018.
  16. F. Andrade, M. Llofriu, M. M. Tanco, G. T. Barnech, and G. Tejera, “Active localization for mobile service robots in symmetrical and open environments,” Latin American Robotics Symposium (LARS), pp. 270–275, 2021.
  17. N. Roy, W. Burgard, D. Fox, and S. Thrun, “Coastal navigation-mobile robot navigation with uncertainty in dynamic environments,” IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 35–40 vol.1, 1999.
  18. Z. Liu, W. Chen, Y. Wang, and J. Wang, “Localizability estimation for mobile robots based on probabilistic grid map and its applications to localization,” IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 46–51, 2012.
  19. H. Inoue, M. Ono, S. Tamaki, and S. Adachi, “Active localization for planetary rovers,” IEEE Aerospace Conference, pp. 1–7, 2016.
  20. V. Olga and S. Cyrill, “Improving SLAM by exploiting building information from publicly available maps and localization priors,” Journal of Photogrammetry, Remote Sensing and Geoinformation Science, vol. 85, 2017.
  21. J. Wang and B. Englot, “Autonomous exploration with expectation-maximization,” International Symposium on Robotics Research (ISRR), pp. 759–774, 2017.
  22. J. Wang, T. Shan, and B. Englot, “Virtual maps for autonomous exploration with pose SLAM,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4899–4906, 2019.
  23. J. Wang, F. Chen, Y. Huang, J. McConnell, T. Shan, and B. Englot, “Virtual maps for autonomous exploration of cluttered underwater environments,” IEEE Journal of Oceanic Engineering, vol. 47, no. 4, pp. 916–935, 2022.
  24. G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based SLAM,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43, 2010.
  25. M. Richards, “Fundamentals of radar signal processing,” McGraw-Hill Education, 2005.
  26. P. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992.
  27. M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Readings in Computer Vision, pp. 726–740, 1987.
  28. J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan, “Pairwise consistent measurement set maximization for robust multi-robot map merging,” IEEE International Conference on Robotics and Automation (ICRA), pp. 2916–2923, 2018.
  29. F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,” Georgia Institute of Technology, Tech. Rep. GT-RIM-CP&R-2012-002, 2012.
  30. M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “iSAM2: Incremental smoothing and mapping using the bayes tree,” The International Journal of Robotics Research, vol. 31, no. 2, pp. 216–235, 2012.
  31. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  32. M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and T. Rauschenbach, “UUV simulator: A gazebo-based package for underwater intervention and multi-robot simulation,” OCEANS MTS/IEEE Monterey, pp. 1–8, 2016.
  33. B.-J. Ho, P. Sodhi, P. Teixeira, M. Hsiao, T. Kusnur, and M. Kaess, “Virtual occupancy grid map for submap-based pose graph SLAM and planning in 3D environments,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2175–2182, 2018.

Summary

We haven't generated a summary for this paper yet.