Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fine-Grained Complexity of Earth Mover's Distance under Translation (2403.04356v1)

Published 7 Mar 2024 in cs.CG

Abstract: The Earth Mover's Distance is a popular similarity measure in several branches of computer science. It measures the minimum total edge length of a perfect matching between two point sets. The Earth Mover's Distance under Translation ($\mathrm{EMDuT}$) is a translation-invariant version thereof. It minimizes the Earth Mover's Distance over all translations of one point set. For $\mathrm{EMDuT}$ in $\mathbb{R}1$, we present an $\widetilde{\mathcal{O}}(n2)$-time algorithm. We also show that this algorithm is nearly optimal by presenting a matching conditional lower bound based on the Orthogonal Vectors Hypothesis. For $\mathrm{EMDuT}$ in $\mathbb{R}d$, we present an $\widetilde{\mathcal{O}}(n{2d+2})$-time algorithm for the $L_1$ and $L_\infty$ metric. We show that this dependence on $d$ is asymptotically tight, as an $n{o(d)}$-time algorithm for $L_1$ or $L_\infty$ would contradict the Exponential Time Hypothesis (ETH). Prior to our work, only approximation algorithms were known for these problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: