Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Memetic Differential Evolution Methods for Semi-Supervised Clustering (2403.04322v2)

Published 7 Mar 2024 in math.OC, cs.LG, and cs.NE

Abstract: In this paper, we propose an extension for semi-supervised Minimum Sum-of-Squares Clustering (MSSC) problems of MDEClust, a memetic framework based on the Differential Evolution paradigm for unsupervised clustering. In semi-supervised MSSC, background knowledge is available in the form of (instance-level) "must-link" and "cannot-link" constraints, each of which indicating if two dataset points should be associated to the same or to a different cluster, respectively. The presence of such constraints makes the problem at least as hard as its unsupervised version and, as a consequence, some framework operations need to be carefully designed to handle this additional complexity: for instance, it is no more true that each point is associated to its nearest cluster center. As far as we know, our new framework, called S-MDEClust, represents the first memetic methodology designed to generate a (hopefully) optimal feasible solution for semi-supervised MSSC problems. Results of thorough computational experiments on a set of well-known as well as synthetic datasets show the effectiveness and efficiency of our proposal.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. doi:10.1007/BF02614317.
  2. doi:10.1007/s10994-009-5103-0.
  3. doi:10.2307/2346830.
  4. doi:10.1109/TIT.1982.1056489.
  5. doi:10.1016/S0031-3203(02)00060-2.
  6. doi:10.1016/0031-3203(91)90097-O.
  7. doi:10.1016/0031-3203(95)00022-R.
  8. doi:10.1016/S0031-3203(99)00137-5.
  9. doi:10.1016/S0167-8655(97)00122-0.
  10. doi:10.1007/s10898-014-0171-5.
  11. doi:10.1016/j.patcog.2015.11.011.
  12. doi:10.1016/j.patcog.2018.12.022.
  13. doi:10.1016/j.patcog.2021.107849.
  14. doi:10.1023/A:1008202821328.
  15. doi:10.1137/1.9781611972788.3.
  16. doi:10.1016/j.cor.2021.105299.
  17. doi:10.1145/1148170.1148242.
  18. doi:10.1016/j.ipm.2008.03.001.
  19. doi:10.1007/978-3-030-61527-7_4.
  20. doi:10.1109/IEEM45057.2020.9309775.
  21. doi:10.1137/1.9781611972740.31.
  22. doi:10.1137/1.9781611972757.13.
  23. doi:10.1137/1.9781611974348.33.
  24. doi:10.1016/j.cor.2020.104979.
  25. doi:10.48550/arXiv.2212.14437.
  26. doi:10.1007/s10618-008-0104-3.
  27. doi:10.1007/s10107-010-0349-7.
  28. doi:10.1016/j.artint.2015.05.006.
  29. doi:10.3233/978-1-61499-672-9-462.
  30. doi:10.1016/j.cor.2022.105958.
  31. doi:10.1016/j.ins.2022.05.035.
  32. doi:10.1007/s10898-021-01047-6.
  33. doi:10.1145/1273496.1273522.
  34. doi:10.1016/j.cor.2013.09.010.
  35. doi:10.1002/nav.3800020109.
  36. doi:10.1142/9789814324700_0104.
  37. doi:10.1007/978-3-642-24425-4_30.
  38. doi:10.1007/BF01908075.
  39. doi:10.1109/TSMC.1987.4309069.
  40. doi:10.1016/j.eswa.2023.121953.
  41. doi:10.1007/s101070100263.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.