Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving link prediction accuracy of network embedding algorithms via rich node attribute information (2403.04282v1)

Published 7 Mar 2024 in cs.SI

Abstract: Complex networks are widely used to represent an abundance of real-world relations ranging from social networks to brain networks. Inferring missing links or predicting future ones based on the currently observed network is known as the link prediction task.Recent network embedding based link prediction algorithms have demonstrated ground-breaking performance on link prediction accuracy. Those algorithms usually apply node attributes as the initial feature input to accelerate the convergence speed during the training process. However, they do not take full advantage of node feature information. In this paper,besides applying feature attributes as the initial input, we make better utilization of node attribute information by building attributable networks and plugging attributable networks into some typical link prediction algorithms and naming this algorithm Attributive Graph Enhanced Embedding (AGEE). AGEE is able to automatically learn the weighting trades-off between the structure and the attributive networks. Numerical experiments show that AGEE can improve the link prediction accuracy by around 3% compared with link prediction framework SEAL, Variational Graph AutoEncoder (VGAE), and Node2vec.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. A. Barabási, “Linked: The new science of networks perseus publishing,” Cambridge, Massachusets, 2002.
  2. A. Theocharidis, S. Van Dongen, A. J. Enright, and T. C. Freeman, “Network visualization and analysis of gene expression data using biolayout express3d,” Nature protocols, vol. 4, no. 10, pp. 1535–1550, 2009.
  3. W. Gu, J. Liu et al., “Exploring small-world network with an elite-clique: Bringing embeddedness theory into the dynamic evolution of a venture capital network,” Social Networks, vol. 57, pp. 70–81, 2019.
  4. R. Li, J. Liang, C. Cheng, X. Zhang, L. Zhao, C. Zhao, and H. E. Stanley, “The evolution of k-shell in syndication networks reveals financial performance of venture capital institutions,” Social Networks, vol. 76, pp. 191–202, 2024.
  5. Q. Yao, S. Ma, J. Liang, K. Christensen, W. Jing, and R. Li, “Syndication network associates with specialisation and performance of venture capital firms,” Journal of Physics: Complexity, vol. 4, no. 2, p. 025016, jun 2023.
  6. M. De Domenico, “Multilayer modeling and analysis of human brain networks,” Giga Science, vol. 6, no. 5, p. gix004, 2017.
  7. M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery, “Learning to construct knowledge bases from the world wide web,” Artificial intelligence, vol. 118, no. 1-2, pp. 69–113, 2000.
  8. A. Popescul and L. H. Ungar, “Statistical relational learning for link prediction,” in IJCAI workshop on learning statistical models from relational data, vol. 2003.   Citeseer, 2003.
  9. D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social networks,” Journal of the American society for information science and technology, vol. 58, no. 7, pp. 1019–1031, 2007.
  10. A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” science, vol. 286, no. 5439, pp. 509–512, 1999.
  11. T. Zhou, L. Lü, and Y.-C. Zhang, “Predicting missing links via local information,” The European Physical Journal B, vol. 71, no. 4, pp. 623–630, 2009.
  12. H. Liu, Z. Hu, H. Haddadi, and H. Tian, “Hidden link prediction based on node centrality and weak ties,” EPL (Europhysics Letters), vol. 101, no. 1, p. 18004, 2013.
  13. G. Rücker, “Network meta-analysis, electrical networks and graph theory,” Research Synthesis Methods, vol. 3, no. 4, pp. 312–324, 2012.
  14. F. Shang, B. Chen, P. Expert, L. Lü, A. Yang, H. E. Stanley, R. Lambiotte, T. S. Evans, and R. Li, “Local dominance unveils clusters in networks,” 2022.
  15. B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.   ACM, 2014, pp. 701–710.
  16. A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining.   ACM, 2016, pp. 855–864.
  17. M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity preserving graph embedding,” in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining.   ACM, 2016, pp. 1105–1114.
  18. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale information network embedding,” in Proceedings of the 24th International Conference on World Wide Web.   International World Wide Web Conferences Steering Committee, 2015, pp. 1067–1077.
  19. L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec: Learning node representations from structural identity,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.   ACM, 2017, pp. 385–394.
  20. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
  21. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Advances in Neural Information Processing Systems, 2017, pp. 1024–1034.
  22. M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” arXiv preprint arXiv:1802.09691, 2018.
  23. A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating the construction of internet portals with machine learning,” Information Retrieval, vol. 3, pp. 127–163, 2000.
  24. S. Bandyopadhyay, U. Maulik, L. B. Holder, D. J. Cook, and L. Getoor, “Link-based classification,” Advanced methods for knowledge discovery from complex data, pp. 189–207, 2005.
  25. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  26. J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin, “A convolutional encoder model for neural machine translation,” arXiv preprint arXiv:1611.02344, 2016.
  27. W. Gu, F. Gao, X. Lou, and J. Zhang, “Discovering latent node information by graph attention network,” Scientific Reports, vol. 11, no. 1, pp. 1–10, 2021.
  28. T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308, 2016.
  29. F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguná, and D. Krioukov, “Popularity versus similarity in growing networks,” Nature, vol. 489, no. 7417, p. 537, 2012.
  30. W. Gu, L. Gong, X. Lou, and J. Zhang, “The hidden flow structure and metric space of network embedding algorithms based on random walks,” Scientific reports, vol. 7, no. 1, p. 13114, 2017.
  31. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.
  32. D. P. Kingma, M. Welling et al., “An introduction to variational autoencoders,” Foundations and Trends in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.
  33. M. Kim, S. H. Baek, and M. Song, “Relation extraction for biological pathway construction using node2vec,” BMC bioinformatics, vol. 19, no. 8, pp. 75–84, 2018.
  34. G. Rosenthal, F. Váša, A. Griffa, P. Hagmann, E. Amico, J. Goñi, G. Avidan, and O. Sporns, “Mapping higher-order relations between brain structure and function with embedded vector representations of connectomes,” Nature communications, vol. 9, no. 1, pp. 1–12, 2018.
  35. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” Advances in neural information processing systems, vol. 26, 2013.
  36. S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially regularized graph autoencoder for graph embedding,” arXiv preprint arXiv:1802.04407, 2018.

Summary

We haven't generated a summary for this paper yet.