Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fill-and-Spill: Deep Reinforcement Learning Policy Gradient Methods for Reservoir Operation Decision and Control (2403.04195v1)

Published 7 Mar 2024 in cs.LG and math.OC

Abstract: Changes in demand, various hydrological inputs, and environmental stressors are among the issues that water managers and policymakers face on a regular basis. These concerns have sparked interest in applying different techniques to determine reservoir operation policy decisions. As the resolution of the analysis increases, it becomes more difficult to effectively represent a real-world system using traditional methods such as Dynamic Programming (DP) and Stochastic Dynamic Programming (SDP) for determining the best reservoir operation policy. One of the challenges is the "curse of dimensionality," which means the number of samples needed to estimate an arbitrary function with a given level of accuracy grows exponentially with respect to the number of input variables (i.e., dimensionality) of the function. Deep Reinforcement Learning (DRL) is an intelligent approach to overcome the curses of stochastic optimization problems for reservoir operation policy decisions. To our knowledge, this study is the first attempt that examine various novel DRL continuous-action policy gradient methods (PGMs), including Deep Deterministic Policy Gradients (DDPG), Twin Delayed DDPG (TD3), and two different versions of Soft Actor-Critic (SAC18 and SAC19) for optimizing reservoir operation policy. In this study, multiple DRL techniques were implemented in order to find the optimal operation policy of Folsom Reservoir in California, USA. The reservoir system supplies agricultural, municipal, hydropower, and environmental flow demands and flood control operations to the City of Sacramento. Analysis suggests that the TD3 and SAC are robust to meet the Folsom Reservoir's demands and optimize reservoir operation policies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube