Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Silicon Photonic 2.5D Interposer Networks for Overcoming Communication Bottlenecks in Scale-out Machine Learning Hardware Accelerators (2403.04189v1)

Published 7 Mar 2024 in cs.AR, cs.LG, and eess.SP

Abstract: Modern ML applications are becoming increasingly complex and monolithic (single chip) accelerator architectures cannot keep up with their energy efficiency and throughput demands. Even though modern digital electronic accelerators are gradually adopting 2.5D architectures with multiple smaller chiplets to improve scalability, they face fundamental limitations due to a reliance on slow metallic interconnects. This paper outlines how optical communication and computation can be leveraged in 2.5D platforms to realize energy-efficient and high throughput 2.5D ML accelerator architectures.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.