Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Explainable AI Framework for Artificial Intelligence of Medical Things (2403.04130v1)

Published 7 Mar 2024 in cs.CV

Abstract: The healthcare industry has been revolutionized by the convergence of Artificial Intelligence of Medical Things (AIoMT), allowing advanced data-driven solutions to improve healthcare systems. With the increasing complexity of AI models, the need for Explainable Artificial Intelligence (XAI) techniques become paramount, particularly in the medical domain, where transparent and interpretable decision-making becomes crucial. Therefore, in this work, we leverage a custom XAI framework, incorporating techniques such as Local Interpretable Model-Agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), and Gradient-weighted Class Activation Mapping (Grad-Cam), explicitly designed for the domain of AIoMT. The proposed framework enhances the effectiveness of strategic healthcare methods and aims to instill trust and promote understanding in AI-driven medical applications. Moreover, we utilize a majority voting technique that aggregates predictions from multiple convolutional neural networks (CNNs) and leverages their collective intelligence to make robust and accurate decisions in the healthcare system. Building upon this decision-making process, we apply the XAI framework to brain tumor detection as a use case demonstrating accurate and transparent diagnosis. Evaluation results underscore the exceptional performance of the XAI framework, achieving high precision, recall, and F1 scores with a training accuracy of 99% and a validation accuracy of 98%. Combining advanced XAI techniques with ensemble-based deep-learning (DL) methodologies allows for precise and reliable brain tumor diagnoses as an application of AIoMT.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. D. C. Nguyen, Q.-V. Pham, P. N. Pathirana, M. Ding, A. Seneviratne, Z. Lin, O. Dobre, and W.-J. Hwang, “Federated learning for smart healthcare: A survey,” ACM Computing Surveys (CSUR), vol. 55, no. 3, pp. 1–37, 2022.
  2. S. Al Jannat, A. Amin, M. S. Hossain, E. Hossain, E. Haque, and N. A. Roni, “Adpt: An automated disease prognosis tool towards classifying medical disease using hybrid architecture of deep learning paradigm,” pp. 903–908, 2022.
  3. P. Tiwari, B. Pant, M. M. Elarabawy, M. Abd-Elnaby, N. Mohd, G. Dhiman, and S. Sharma, “Cnn based multiclass brain tumor detection using medical imaging,” Computational Intelligence and Neuroscience, vol. 2022, 2022.
  4. E. I. Zacharaki, S. Wang, S. Chawla, D. Soo Yoo, R. Wolf, E. R. Melhem, and C. Davatzikos, “Classification of brain tumor type and grade using mri texture and shape in a machine learning scheme,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 62, no. 6, pp. 1609–1618, 2009.
  5. K. Sharma, A. Kaur, and S. Gujral, “Brain tumor detection based on machine learning algorithms,” International Journal of Computer Applications, vol. 103, no. 1, 2014.
  6. J. Amin, M. Sharif, M. Raza, T. Saba, and M. A. Anjum, “Brain tumor detection using statistical and machine learning method,” Computer methods and programs in biomedicine, vol. 177, pp. 69–79, 2019.
  7. M. Nazir, S. Shakil, and K. Khurshid, “Role of deep learning in brain tumor detection and classification (2015 to 2020): A review,” Computerized medical imaging and graphics, vol. 91, p. 101940, 2021.
  8. G. Hemanth, M. Janardhan, and L. Sujihelen, “Design and implementing brain tumor detection using machine learning approach,” in 2019 3rd international conference on trends in electronics and informatics (ICOEI), pp. 1289–1294, IEEE, 2019.
  9. S. Saeed and R. Jafri, “Estimation of brain tumor using latest technology of mobile phone,” Journal of Information and Communication Technology (JICT), vol. 9, no. 1, pp. 32–09, 2015.
  10. R. Manne and S. C. Kantheti, “Application of artificial intelligence in healthcare: chances and challenges,” Current Journal of Applied Science and Technology, vol. 40, no. 6, pp. 78–89, 2021.
  11. E. E. Lee, J. Torous, M. De Choudhury, C. A. Depp, S. A. Graham, H.-C. Kim, M. P. Paulus, J. H. Krystal, and D. V. Jeste, “Artificial intelligence for mental health care: clinical applications, barriers, facilitators, and artificial wisdom,” Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, vol. 6, no. 9, pp. 856–864, 2021.
  12. S. Roy, T. Meena, and S.-J. Lim, “Demystifying supervised learning in healthcare 4.0: A new reality of transforming diagnostic medicine,” Diagnostics, vol. 12, no. 10, p. 2549, 2022.
  13. S. Hossain, A. Chakrabarty, T. R. Gadekallu, M. Alazab, and M. J. Piran, “Vision transformers, ensemble model, and transfer learning leveraging explainable ai for brain tumor detection and classification,” IEEE Journal of Biomedical and Health Informatics, 2023.
  14. D. N. George, H. B. Jehlol, A. S. A. Oleiwi, et al., “Brain tumor detection using shape features and machine learning algorithms,” International Journal of Advanced Research in Computer Science and Software Engineering, vol. 5, no. 10, pp. 454–459, 2015.
  15. A. Rehman, S. Naz, M. I. Razzak, F. Akram, and M. Imran, “A deep learning-based framework for automatic brain tumors classification using transfer learning,” Circuits, Systems, and Signal Processing, vol. 39, pp. 757–775, 2020.
  16. L. Gaur, M. Bhandari, T. Razdan, S. Mallik, and Z. Zhao, “Explanation-driven deep learning model for prediction of brain tumour status using mri image data,” Frontiers in Genetics, p. 448, 2022.
  17. S. Maqsood, R. Damaševičius, and R. Maskeliūnas, “Multi-modal brain tumor detection using deep neural network and multiclass svm,” Medicina, vol. 58, no. 8, p. 1090, 2022.
  18. G. M. James, Majority vote classifiers: theory and applications. Stanford University, 1998.
  19. A. Hamada, “Brain tumor detection,” 2021. Accessed: 2023-04-08.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube