Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Outer Bi-Lipschitz Extensions of Linear Johnson-Lindenstrauss Embeddings of Subsets of $\mathbb{R}^N$ (2403.03969v1)

Published 6 Mar 2024 in math.MG, cs.DS, cs.NA, and math.NA

Abstract: The celebrated Johnson-Lindenstrauss lemma states that for all $\varepsilon \in (0,1)$ and finite sets $X \subseteq \mathbb{R}N$ with $n>1$ elements, there exists a matrix $\Phi \in \mathbb{R}{m \times N}$ with $m=\mathcal{O}(\varepsilon{-2}\log n)$ such that [ (1 - \varepsilon) |x-y|_2 \leq |\Phi x-\Phi y|_2 \leq (1+\varepsilon)| x- y|_2 \quad \forall\, x, y \in X.] Herein we consider terminal embedding results which have recently been introduced in the computer science literature as stronger extensions of the Johnson-Lindenstrauss lemma for finite sets. After a short survey of this relatively recent line of work, we extend the theory of terminal embeddings to hold for arbitrary (e.g., infinite) subsets $X \subseteq \mathbb{R}N$, and then specialize our generalized results to the case where $X$ is a low-dimensional compact submanifold of $\mathbb{R}N$. In particular, we prove the following generalization of the Johnson-Lindenstrauss lemma: For all $\varepsilon \in (0,1)$ and $X\subseteq\mathbb{R}N$, there exists a terminal embedding $f: \mathbb{R}N \longrightarrow \mathbb{R}{m}$ such that $$(1 - \varepsilon) | x - y |_2 \leq \left| f(x) - f(y) \right|_2 \leq (1 + \varepsilon) | x - y |_2 \quad \forall \, x \in X ~{\rm and}~ \forall \, y \in \mathbb{R}N.$$ Crucially, we show that the dimension $m$ of the range of $f$ above is optimal up to multiplicative constants, satisfying $m=\mathcal{O}(\varepsilon{-2} \omega2(S_X))$, where $\omega(S_X)$ is the Gaussian width of the set of unit secants of $X$, $S_X=\overline{{(x-y)/|x-y|_2 \colon x \neq y \in X}}$. Furthermore, our proofs are constructive and yield algorithms for computing a general class of terminal embeddings $f$, an instance of which is demonstrated herein to allow for more accurate compressive nearest neighbor classification than standard linear Johnson-Lindenstrauss embeddings do in practice.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. Terminal embeddings in sublinear time. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science—FOCS 2021, pages 1209–1216. IEEE Computer Soc., Los Alamitos, CA, [2022] ©2022.
  2. Compressed sensing and best k𝑘kitalic_k-term approximation. J. Amer. Math. Soc., 22(1):211–231, 2009.
  3. The smashed filter for compressive classification and target recognition - art. no. 64980h. Proceedings of SPIE, 6498, 02 2007.
  4. Li Deng. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing Magazine, 29:141–142, 2012.
  5. Terminal embeddings. Theoretical Computer Science, 697:1–36, 2017.
  6. Herbert Federer. Curvature measures. Trans. Amer. Math. Soc., 93:418–491, 1959.
  7. CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx, March 2014.
  8. Graph implementations for nonsmooth convex programs. In Recent advances in learning and control, volume 371 of Lect. Notes Control Inf. Sci., pages 95–110. Springer, London, 2008.
  9. Lower bounds on the low-distortion embedding dimension of submanifolds of ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Appl. Comput. Harmon. Anal., 65:170–180, 2023.
  10. On Fast Johnson-Lindenstrauss Embeddings of Compact Submanifolds of ℝNsuperscriptℝ𝑁\mathbb{R}^{N}blackboard_R start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT with Boundary. Discrete Comput. Geom., 71(2):498–555, 2024.
  11. Extensions of lipschitz maps into a hilbert space. Contemporary Mathematics, 26:189–206, 01 1984.
  12. M. Kirszbraun. Über die zusammenziehende und lipschitzsche transformationen. Fundamenta Mathematicae, 22(1):77–108, 1934.
  13. Optimality of the Johnson-Lindenstrauss lemma. In 58th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2017, pages 633–638. IEEE Computer Soc., Los Alamitos, CA, 2017.
  14. Nonlinear dimension reduction via outer bi-Lipschitz extensions. In STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 1088–1101. ACM, New York, 2018.
  15. Optimal terminal dimensionality reduction in Euclidean space. In STOC’19—Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1064–1069. ACM, New York, 2019.
  16. Columbia object image library (coil100). 1996.
  17. Roman Vershynin. High-dimensional probability, volume 47 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2018. An introduction with applications in data science, With a foreword by Sara van de Geer.
  18. John von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100:295–320, 1928.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.