Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

To Trust or Not to Trust: Assignment Mechanisms with Predictions in the Private Graph Model (2403.03725v1)

Published 6 Mar 2024 in cs.GT

Abstract: The realm of algorithms with predictions has led to the development of several new algorithms that leverage (potentially erroneous) predictions to enhance their performance guarantees. The challenge is to devise algorithms that achieve optimal approximation guarantees as the prediction quality varies from perfect (consistency) to imperfect (robustness). This framework is particularly appealing in mechanism design contexts, where predictions might convey private information about the agents. In this paper, we design strategyproof mechanisms that leverage predictions to achieve improved approximation guarantees for several variants of the Generalized Assignment Problem (GAP) in the private graph model. In this model, first introduced by Dughmi & Ghosh (2010), the set of resources that an agent is compatible with is private information. For the Bipartite Matching Problem (BMP), we give a deterministic group-strategyproof (GSP) mechanism that is $(1 +1/\gamma)$-consistent and $(1 + \gamma)$-robust, where $\gamma \ge 1$ is some confidence parameter. We also prove that this is best possible. Remarkably, our mechanism draws inspiration from the renowned Gale-Shapley algorithm, incorporating predictions as a crucial element. Additionally, we give a randomized mechanism that is universally GSP and improves on the guarantees in expectation. The other GAP variants that we consider all make use of a unified greedy mechanism that adds edges to the assignment according to a specific order. Our universally GSP mechanism randomizes over the greedy mechanism, our mechanism for BMP and the predicted assignment, leading to $(1+3/\gamma)$-consistency and $(3+\gamma)$-robustness in expectation. All our mechanisms also provide more fine-grained approximation guarantees that interpolate between the consistency and the robustness, depending on some natural error measure of the prediction.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: