Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

To Trust or Not to Trust: Assignment Mechanisms with Predictions in the Private Graph Model (2403.03725v1)

Published 6 Mar 2024 in cs.GT

Abstract: The realm of algorithms with predictions has led to the development of several new algorithms that leverage (potentially erroneous) predictions to enhance their performance guarantees. The challenge is to devise algorithms that achieve optimal approximation guarantees as the prediction quality varies from perfect (consistency) to imperfect (robustness). This framework is particularly appealing in mechanism design contexts, where predictions might convey private information about the agents. In this paper, we design strategyproof mechanisms that leverage predictions to achieve improved approximation guarantees for several variants of the Generalized Assignment Problem (GAP) in the private graph model. In this model, first introduced by Dughmi & Ghosh (2010), the set of resources that an agent is compatible with is private information. For the Bipartite Matching Problem (BMP), we give a deterministic group-strategyproof (GSP) mechanism that is $(1 +1/\gamma)$-consistent and $(1 + \gamma)$-robust, where $\gamma \ge 1$ is some confidence parameter. We also prove that this is best possible. Remarkably, our mechanism draws inspiration from the renowned Gale-Shapley algorithm, incorporating predictions as a crucial element. Additionally, we give a randomized mechanism that is universally GSP and improves on the guarantees in expectation. The other GAP variants that we consider all make use of a unified greedy mechanism that adds edges to the assignment according to a specific order. Our universally GSP mechanism randomizes over the greedy mechanism, our mechanism for BMP and the predicted assignment, leading to $(1+3/\gamma)$-consistency and $(3+\gamma)$-robustness in expectation. All our mechanisms also provide more fine-grained approximation guarantees that interpolate between the consistency and the robustness, depending on some natural error measure of the prediction.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com