Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training (2403.03592v1)

Published 6 Mar 2024 in cs.CR and cs.AI

Abstract: Machine Learning (ML), addresses a multitude of complex issues in multiple disciplines, including social sciences, finance, and medical research. ML models require substantial computing power and are only as powerful as the data utilized. Due to high computational cost of ML methods, data scientists frequently use Machine Learning-as-a-Service (MLaaS) to outsource computation to external servers. However, when working with private information, like financial data or health records, outsourcing the computation might result in privacy issues. Recent advances in Privacy-Preserving Techniques (PPTs) have enabled ML training and inference over protected data through the use of Privacy-Preserving Machine Learning (PPML). However, these techniques are still at a preliminary stage and their application in real-world situations is demanding. In order to comprehend discrepancy between theoretical research suggestions and actual applications, this work examines the past and present of PPML, focusing on Homomorphic Encryption (HE) and Secure Multi-party Computation (SMPC) applied to ML. This work primarily focuses on the ML model's training phase, where maintaining user data privacy is of utmost importance. We provide a solid theoretical background that eases the understanding of current approaches and their limitations. In addition, we present a SoK of the most recent PPML frameworks for model training and provide a comprehensive comparison in terms of the unique properties and performances on standard benchmarks. Also, we reproduce the results for some of the papers and examine at what level existing works in the field provide support for open science. We believe our work serves as a valuable contribution by raising awareness about the current gap between theoretical advancements and real-world applications in PPML, specifically regarding open-source availability, reproducibility, and usability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube