Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Causal Disentanglement for Regulating Social Influence Bias in Social Recommendation (2403.03578v1)

Published 6 Mar 2024 in cs.SI and cs.AI

Abstract: Social recommendation systems face the problem of social influence bias, which can lead to an overemphasis on recommending items that friends have interacted with. Addressing this problem is crucial, and existing methods often rely on techniques such as weight adjustment or leveraging unbiased data to eliminate this bias. However, we argue that not all biases are detrimental, i.e., some items recommended by friends may align with the user's interests. Blindly eliminating such biases could undermine these positive effects, potentially diminishing recommendation accuracy. In this paper, we propose a Causal Disentanglement-based framework for Regulating Social influence Bias in social recommendation, named CDRSB, to improve recommendation performance. From the perspective of causal inference, we find that the user social network could be regarded as a confounder between the user and item embeddings (treatment) and ratings (outcome). Due to the presence of this social network confounder, two paths exist from user and item embeddings to ratings: a non-causal social influence path and a causal interest path. Building upon this insight, we propose a disentangled encoder that focuses on disentangling user and item embeddings into interest and social influence embeddings. Mutual information-based objectives are designed to enhance the distinctiveness of these disentangled embeddings, eliminating redundant information. Additionally, a regulatory decoder that employs a weight calculation module to dynamically learn the weights of social influence embeddings for effectively regulating social influence bias has been designed. Experimental results on four large-scale real-world datasets Ciao, Epinions, Dianping, and Douban book demonstrate the effectiveness of CDRSB compared to state-of-the-art baselines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube