Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Secure Total Domination Number in Maximal Outerplanar Graphs (2403.03404v2)

Published 6 Mar 2024 in math.CO and cs.DM

Abstract: A subset $S$ of vertices in a graph $G$ is a secure total dominating set of $G$ if $S$ is a total dominating set of $G$ and, for each vertex $u \not\in S$, there is a vertex $v \in S$ such that $uv$ is an edge and $(S \setminus {v}) \cup {u}$ is also a total dominating set of $G$. We show that if $G$ is a maximal outerplanar graph of order $n$, then $G$ has a total secure dominating set of size at most $\lfloor 2n/3 \rfloor$. Moreover, if an outerplanar graph $G$ of order $n$, then each secure total dominating set has at least $\lceil (n+2)/3 \rceil$ vertices. We show that these bounds are best possible.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.