Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mem-elements based Neuromorphic Hardware for Neural Network Application (2403.03002v1)

Published 5 Mar 2024 in cs.NE, cs.AI, and cs.ET

Abstract: The thesis investigates the utilization of memristive and memcapacitive crossbar arrays in low-power machine learning accelerators, offering a comprehensive co-design framework for deep neural networks (DNN). The model, implemented through a hybrid Python and PyTorch approach, accounts for various non-idealities, achieving exceptional training accuracies of 90.02% and 91.03% for the CIFAR-10 dataset with memristive and memcapacitive crossbar arrays on an 8-layer VGG network. Additionally, the thesis introduces a novel approach to emulate meminductor devices using Operational Transconductance Amplifiers (OTA) and capacitors, showcasing adjustable behavior. Transistor-level simulations in 180 nm CMOS technology, operating at 60 MHz, demonstrate the proposed meminductor emulator's viability with a power consumption of 0.337 mW. The design is further validated in neuromorphic circuits and CNN accelerators, achieving training and testing accuracies of 91.04% and 88.82%, respectively. Notably, the exclusive use of MOS transistors ensures the feasibility of monolithic IC fabrication. This research significantly contributes to the exploration of advanced hardware solutions for efficient and high-performance machine-learning applications.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)