Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SpaceHopper: A Small-Scale Legged Robot for Exploring Low-Gravity Celestial Bodies (2403.02831v1)

Published 5 Mar 2024 in cs.RO

Abstract: We present SpaceHopper, a three-legged, small-scale robot designed for future mobile exploration of asteroids and moons. The robot weighs 5.2kg and has a body size of 245mm while using space-qualifiable components. Furthermore, SpaceHopper's design and controls make it well-adapted for investigating dynamic locomotion modes with extended flight-phases. Instead of gyroscopes or fly-wheels, the system uses its three legs to reorient the body during flight in preparation for landing. We control the leg motion for reorientation using Deep Reinforcement Learning policies. In a simulation of Ceres' gravity (0.029g), the robot can reliably jump to commanded positions up to 6m away. Our real-world experiments show that SpaceHopper can successfully reorient to a safe landing orientation within 9.7 degree inside a rotational gimbal and jump in a counterweight setup in Earth's gravity. Overall, we consider SpaceHopper an important step towards controlled jumping locomotion in low-gravity environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. M. Elvis, “Let’s mine asteroids — for science and profit,” Nature, vol. 485, no. 7400, pp. 549–549, May 2012.
  2. A. M. Yazici and S. Darici, “The new opportunities in space economy,” İnsan ve Toplum Bilimleri Araştırmaları Dergisi, vol. 8, no. 4, pp. 3252–3271, 2019.
  3. J. Green, “Perseverance rover and its search for life on mars,” Communications of the Byurakan Astrophysical Observatory, pp. 464–469, 01 2021.
  4. H.-J. Sedlmayr, et al., “Mmx - development of a rover locomotion system for phobos,” 03 2020, pp. 1–10.
  5. H. Kolvenbach, M. Breitenstein, C. Gehring, and M. Hutter, “Scalability analysis of legged robots for space exploration,” in Unlocking imagination, fostering innovation and strengthening security: 68th International Astronautical Congress (IAC 2017), vol. 16.   Curran, 2018, pp. 10 399–10 413.
  6. T.-M. Ho, et al., “Mascot—the mobile asteroid surface scout onboard the Hayabusa2 mission,” Space Science Reviews, vol. 208, no. 1, pp. 339–374, 2017.
  7. H. Yabuta, “Arrival, touchdown and sequel to the voyage of Hayabusa2,” Nature Astronomy, vol. 3, no. 4, pp. 287–289, Apr. 2019.
  8. A. Parness, N. Abcouwer, C. Fuller, N. Wiltsie, J. Nash, and B. Kennedy, “Lemur 3: A limbed climbing robot for extreme terrain mobility in space,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 5467–5473.
  9. T. G. Chen, et al., “Reachbot: A small robot with exceptional reach for rough terrain,” in 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 4517–4523.
  10. M. Hutter, et al., “Anymal - toward legged robots for harsh environments,” Advanced Robotics, vol. 31, no. 17, pp. 918–931, 2017. [Online]. Available: https://doi.org/10.1080/01691864.2017.1378591
  11. A. Bouman, et al., “Autonomous spot: Long-range autonomous exploration of extreme environments with legged locomotion,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 2518–2525.
  12. H. Kolvenbach, “Quadrupedal robots for planetary exploration,” Ph.D. dissertation, ETH Zurich, 2021.
  13. A. Agha, et al., “Nebula: Quest for robotic autonomy in challenging environments; TEAM costar at the DARPA subterranean challenge,” CoRR, vol. abs/2103.11470, 2021. [Online]. Available: https://arxiv.org/abs/2103.11470
  14. P. Arm, et al., “Spacebok: A dynamic legged robot for space exploration,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 6288–6294.
  15. H. Kolvenbach, et al., “Traversing steep and granular martian analog slopes with a dynamic quadrupedal robot,” in Field Robotics, 2022.
  16. H. Kolvenbach, C. D. Bellicoso, F. Jenelten, L. Wellhausen, and M. Hutter, “Efficient gait selection for quadrupedal robots on the moon and mars,” in 14th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS 2018).   ESA Conference Bureau, 2018.
  17. H. Kolvenbach, E. Hampp, P. Barton, R. Zenkl, and M. Hutter, “Towards jumping locomotion for quadruped robots on the moon,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 5459–5466.
  18. N. Rudin, H. Kolvenbach, V. Tsounis, and M. Hutter, “Cat-like jumping and landing of legged robots in low-gravity using deep reinforcement learning,” CoRR, vol. abs/2106.09357, 2021. [Online]. Available: https://arxiv.org/abs/2106.09357
  19. “Cubesat - deployer standards,” https://www.eoportal.org/other-space-activities/cubesat-deployer-standards, Last accessed: 05.09.2023.
  20. “Ec 45 flat 42.8 mm, brushless, 50 watt, with hall sensors,” https://www.maxongroup.com/maxon/view/product/motor/ecmotor/ecflat /ecflat45/651610, Last accessed: 07.09.2023.
  21. “Ecx torque 22 m 22 mm, brushless, with hall sensors,” https://www.maxongroup.com/maxon/view/product/motor/ecmotor/ECX /ECX22/ECXI22M4ZF46C4IL1Y479A, Last accessed: 07.09.2023.
  22. U. Kissling and S. Beermann, “Face gears: Geometry and strength,” Gear Technol, vol. 1, no. 2, pp. 54–61, 2007.
  23. “Spot, boston dynamics,” https://www.bostondynamics.com/products/spot, Last accessed: 08.03.2023.
  24. A. Abate, J. W. Hurst, and R. L. Hatton, “Mechanical antagonism in legged robots.” in Robotics: Science and Systems, vol. 6.   Ann Arbor, MI, 2016.
  25. “NASA - Materials Data Handbook - Aluminum Alloy 7075,” https://ntrs.nasa.gov/citations/19720022809, Last accessed: 15.09.2023.
  26. “Battery management system (bms) 30a,” https://enepaq.com/product/battery-management-system-bms-30a/, Last accessed: 05.09.2023.
  27. “Stm32g431kb,” https://www.st.com/en/microcontrollers-microprocessors/stm32g431kb.html, Last accessed: 05.09.2023.
  28. “Epos4 compact 24/5 ethercat 3-axes, digital positioning controller, 5 a per axis, 10 - 24 vdc,” https://www.maxongroup.com/maxon/view/product/control/ Positionierung/684519, Last accessed: 07.09.2023.
  29. “Time-of-flight (tof) ranging sensor with advanced multi-zone and multi-object detection,” https://www.st.com/en/imaging-and-photonics-solutions/vl53l1.html, Last accessed: 07.09.2023.
  30. M. Quigley, et al., “Ros: an open-source robot operating system,” in ICRA workshop on open source software, vol. 3, no. 3.2.   Kobe, Japan, 2009, p. 5.
  31. C. Fernandes, L. Gurvits, and Z. Li, “Attitude control of space platform/manipulator system using internal motion,” in Proceedings 1992 IEEE International Conference on Robotics and Automation, 1992, pp. 893–898 vol.1.
  32. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/1707.06347
  33. N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in minutes using massively parallel deep reinforcement learning,” CoRR, vol. abs/2109.11978, 2021. [Online]. Available: https://arxiv.org/abs/2109.11978
  34. W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep reinforcement learning for robotics: a survey,” CoRR, vol. abs/2009.13303, 2020. [Online]. Available: https://arxiv.org/abs/2009.13303
  35. V. Makoviychuk, et al., “Isaac gym: High performance gpu-based physics simulation for robot learning,” CoRR, vol. abs/2108.10470, 2021. [Online]. Available: https://arxiv.org/abs/2108.10470
  36. J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization for transferring deep neural networks from simulation to the real world,” CoRR, vol. abs/1703.06907, 2017. [Online]. Available: http://arxiv.org/abs/1703.06907
  37. O. Bekdash, et al., “Development and evaluation of the active response gravity offload system as a lunar and martian eva simulation environment.”   2020 International Conference on Environmental Systems, 2020.
  38. M. Trentini, P. Arm, G. Valsecchi, H. Kolvenbach, and M. Hutter, “Concept study of a small-scale dynamic legged robot for lunar exploration,” in IAC-23: IAF SPACE EXPLORATION SYMPOSIUM.   BCC B3: IAF, October 3 2023, paper code: IAC-23,A3,2B,7,x78250; Session: 2B. Moon Exploration – Part 2. [Online]. Available: https://iafastro.directory/iac/paper/id/78250/summary/
  39. J. Delaune, D. S. Bayard, and R. Brockers, “Range-visual-inertial odometry: Scale observability without excitation,” CoRR, vol. abs/2103.15215, 2021. [Online]. Available: https://arxiv.org/abs/2103.15215
  40. B. Balaram, et al., “Mars helicopter technology demonstrator,” in 2018 AIAA Atmospheric Flight Mechanics Conference, 2018, p. 0023.
  41. N. Rudin, D. Hoeller, M. Bjelonic, and M. Hutter, “Advanced skills by learning locomotion and local navigation end-to-end,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 2497–2503.
  42. S. Gu, et al., “A review of safe reinforcement learning: Methods, theory and application,” 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.