Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

A Two-Stage Training Method for Modeling Constrained Systems With Neural Networks (2403.02730v1)

Published 5 Mar 2024 in cs.LG, cs.CE, and math.OC

Abstract: Real-world systems are often formulated as constrained optimization problems. Techniques to incorporate constraints into Neural Networks (NN), such as Neural Ordinary Differential Equations (Neural ODEs), have been used. However, these introduce hyperparameters that require manual tuning through trial and error, raising doubts about the successful incorporation of constraints into the generated model. This paper describes in detail the two-stage training method for Neural ODEs, a simple, effective, and penalty parameter-free approach to model constrained systems. In this approach the constrained optimization problem is rewritten as two unconstrained sub-problems that are solved in two stages. The first stage aims at finding feasible NN parameters by minimizing a measure of constraints violation. The second stage aims to find the optimal NN parameters by minimizing the loss function while keeping inside the feasible region. We experimentally demonstrate that our method produces models that satisfy the constraints and also improves their predictive performance. Thus, ensuring compliance with critical system properties and also contributing to reducing data quantity requirements. Furthermore, we show that the proposed method improves the convergence to an optimal solution and improves the explainability of Neural ODE models. Our proposed two-stage training method can be used with any NN architectures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.