Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coronary artery segmentation in non-contrast calcium scoring CT images using deep learning (2403.02544v1)

Published 4 Mar 2024 in eess.IV, cs.CV, and cs.LG

Abstract: Precise localization of coronary arteries in Computed Tomography (CT) scans is critical from the perspective of medical assessment of coronary artery disease. Although various methods exist that offer high-quality segmentation of coronary arteries in cardiac contrast-enhanced CT scans, the potential of less invasive, non-contrast CT in this area is still not fully exploited. Since such fine anatomical structures are hardly visible in this type of medical images, the existing methods are characterized by high recall and low precision, and are used mainly for filtering of atherosclerotic plaques in the context of calcium scoring. In this paper, we address this research gap and introduce a deep learning algorithm for segmenting coronary arteries in multi-vendor ECG-gated non-contrast cardiac CT images which benefits from a novel framework for semi-automatic generation of Ground Truth (GT) via image registration. We hypothesize that the proposed GT generation process is much more efficient in this case than manual segmentation, since it allows for a fast generation of large volumes of diverse data, which leads to well-generalizing models. To investigate and thoroughly evaluate the segmentation quality based on such an approach, we propose a novel method for manual mesh-to-image registration, which is used to create our test-GT. The experimental study shows that the trained model has significantly higher accuracy than the GT used for training, and leads to the Dice and clDice metrics close to the interrater variability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. doi:10.1161/CIR.0b013e318282ab8f.
  2. doi:10.1016/j.compmedimag.2014.09.002.
  3. doi:10.1007/978-3-031-17721-7_2.
  4. doi:10.1007/s10439-015-1387-3.
  5. doi:10.21037/qims.2019.06.21.
  6. doi:10.1016/j.jacbts.2017.11.009.
  7. doi:10.1016/j.jtcvs.2016.12.054.
  8. doi:10.1038/s41592-020-01008-z.
  9. doi:10.1016/j.compmedimag.2022.102049.
  10. doi:10.1109/ACCESS.2021.3086020.
  11. doi:10.1016/0735-1097(90)90282-T.
  12. doi:10.1109/TMI.2012.2216889.
  13. doi:10.1117/12.2042226.
  14. doi:10.1118/1.4945045.
  15. doi:10.1109/TMI.2017.2769839.
  16. doi:10.1109/ISBI.2010.5490426.
  17. doi:10.1109/TMI.2009.2035616.
  18. doi:10.3389/fninf.2013.00050.
  19. doi:10.1016/j.neuroimage.2004.07.068.
  20. doi:10.1016/j.acra.2012.07.018.
  21. doi:10.1109/TMI.2010.2057442.
  22. doi:10.1007/978-3-642-40760-4_10.
  23. doi:10.1109/TMI.2008.2004421.
  24. doi:10.1007/978-3-319-10470-6_87.
  25. S. Kondo, Semi-Automatic Detection of Coronary Artery Calcium with an Artery Identification Technique (2015).
  26. doi:10.54294/hmb052.
  27. doi:10.1007/BFb0056195.
  28. doi:10.3348/kjr.2021.0148.
  29. doi:10.1007/s13735-021-00218-1.
  30. doi:10.1016/j.media.2022.102444.
  31. doi:10.1016/j.compbiomed.2022.106378.
  32. doi:10.1007/s10554-010-9608-1.
  33. doi:10.1109/ISBI.2016.7493209.
  34. doi:10.48550/arXiv.1409.1556.
  35. doi:10.1007/s10554-010-9607-2.
  36. doi:10.1109/TMI.2015.2412651.
  37. doi:10.1088/1361-6560/ac69a7.
  38. doi:10.1016/j.jalz.2016.06.205.
  39. doi:10.1007/s10278-016-9915-8.
  40. doi:10.1109/IPTA50016.2020.9286453.
  41. doi:10.1016/j.patrec.2015.04.006.
  42. doi:10.21105/joss.00745.
  43. doi:10.1118/1.4945696.
  44. doi:10.5281/zenodo.7808199. URL https://doi.org/10.5281/zenodo.7808199
Citations (2)

Summary

We haven't generated a summary for this paper yet.