Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Classification of the Fashion-MNIST Dataset on a Quantum Computer (2403.02405v1)

Published 4 Mar 2024 in quant-ph and cs.LG

Abstract: The potential impact of quantum machine learning algorithms on industrial applications remains an exciting open question. Conventional methods for encoding classical data into quantum computers are not only too costly for a potential quantum advantage in the algorithms but also severely limit the scale of feasible experiments on current hardware. Therefore, recent works, despite claiming the near-term suitability of their algorithms, do not provide experimental benchmarking on standard machine learning datasets. We attempt to solve the data encoding problem by improving a recently proposed variational algorithm [1] that approximately prepares the encoded data, using asymptotically shallow circuits that fit the native gate set and topology of currently available quantum computers. We apply the improved algorithm to encode the Fashion-MNIST dataset [2], which can be directly used in future empirical studies of quantum machine learning algorithms. We deploy simple quantum variational classifiers trained on the encoded dataset on a current quantum computer ibmq-kolkata [3] and achieve moderate accuracies, providing a proof of concept for the near-term usability of our data encoding method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Ibm quantum, https://quantum.ibm.com/ (2021).
  2. V. Dunjko, J. M. Taylor, and H. J. Briegel, Physical Review Letters 117, 130501 (2016), publisher: American Physical Society.
  3. V. Dunjko and H. J. Briegel, Reports on Progress in Physics 81, 074001 (2018).
  4. S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning (2013), arXiv:1307.0411 [quant-ph].
  5. P. Rebentrost, M. Mohseni, and S. Lloyd, Physical Review Letters 113, 130503 (2014), arXiv:1307.0471 [quant-ph].
  6. A. W. Harrow, A. Hassidim, and S. Lloyd, Physical Review Letters 103, 150502 (2009), arXiv:0811.3171 [quant-ph].
  7. V. Giovannetti, S. Lloyd, and L. Maccone, Physical Review Letters 100, 160501 (2008), arXiv:0708.1879 [quant-ph].
  8. E. Tang, Physical Review Letters 127, 060503 (2021), arXiv:1811.00414 [quant-ph].
  9. A. Gilyén, Z. Song, and E. Tang, Quantum 6, 754 (2022), arXiv:2009.07268 [quant-ph].
  10. J. Preskill, Quantum 2, 79 (2018), arXiv:1801.00862 [cond-mat, physics:quant-ph].
  11. M. Schuld and N. Killoran, Physical Review Letters 122, 040504 (2019).
  12. Y. Liu, S. Arunachalam, and K. Temme, Nature Physics 17, 1013 (2021).
  13. E. M. Stoudenmire and D. J. Schwab, Supervised Learning with Quantum-Inspired Tensor Networks (2017), arXiv:1605.05775 [cond-mat, stat].
  14. J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, Physical Review Letters 92, 177902 (2004), publisher: American Physical Society.
  15. M. Plesch and  . Brukner, Physical Review A 83, 032302 (2011), publisher: American Physical Society.
  16. M. Schuld, R. Sweke, and J. J. Meyer, Physical Review A 103, 032430 (2021).
  17. A. Chalumuri, R. Kune, and B. S. Manoj, Quantum Information Processing 20, 119 (2021), aDS Bibcode: 2021QuIP…20..119C.
  18. T. Haug, C. N. Self, and M. S. Kim, Machine Learning: Science and Technology 4, 015005 (2023), publisher: IOP Publishing.
  19. I. Kerenidis and A. Luongo, Physical Review A 101, 062327 (2020), arXiv:1805.08837 [quant-ph].
  20. T. Hur, L. Kim, and D. K. Park, Quantum Machine Intelligence 4, 3 (2022).
  21. U. Schollwoeck, Annals of Physics 326, 96 (2011), arXiv:1008.3477 [cond-mat].
  22. S.-J. Ran, Physical Review A 101, 032310 (2020), arXiv:1908.07958 [cond-mat, physics:quant-ph].
  23. P. Q. Le, F. Dong, and K. Hirota, Quantum Information Processing 10, 63 (2011).
  24. J. Iaconis and S. Johri, Tensor Network Based Efficient Quantum Data Loading of Images (2023), arXiv:2310.05897 [quant-ph].
  25. F. Vatan and C. Williams, Physical Review A 69, 032315 (2004), publisher: American Physical Society.
  26. B. Kraus and J. I. Cirac, Physical Review A 63, 062309 (2001), publisher: American Physical Society.
  27. V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, NY, 2000).
  28. C. Burges and C. J. Burges, Data Mining and Knowledge Discovery 2, 121 (1998).
  29. C.-W. Hsu and C.-J. Lin, IEEE Transactions on Neural Networks 13, 415 (2002), conference Name: IEEE Transactions on Neural Networks.
  30. J. Weston and C. Watkins (1999) pp. 219–224.
  31. R. E. Bechhofer, S. Elmaghraby, and N. Morse, The Annals of Mathematical Statistics 30, 102 (1959), publisher: Institute of Mathematical Statistics.
  32. D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization (2017), arXiv:1412.6980 [cs].
  33. I. A. Luchnikov, M. E. Krechetov, and S. N. Filippov, New Journal of Physics 23, 073006 (2021b), arXiv:2007.01287 [quant-ph] .
  34. Z.-Y. Wei, D. Malz, and J. I. Cirac, Physical Review Letters 128, 010607 (2022), publisher: American Physical Society.
  35. G. Vidal, Physical Review Letters 101, 110501 (2008), arXiv:quant-ph/0610099 [quant-ph] .
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: