Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of the Fashion-MNIST Dataset on a Quantum Computer (2403.02405v1)

Published 4 Mar 2024 in quant-ph and cs.LG

Abstract: The potential impact of quantum machine learning algorithms on industrial applications remains an exciting open question. Conventional methods for encoding classical data into quantum computers are not only too costly for a potential quantum advantage in the algorithms but also severely limit the scale of feasible experiments on current hardware. Therefore, recent works, despite claiming the near-term suitability of their algorithms, do not provide experimental benchmarking on standard machine learning datasets. We attempt to solve the data encoding problem by improving a recently proposed variational algorithm [1] that approximately prepares the encoded data, using asymptotically shallow circuits that fit the native gate set and topology of currently available quantum computers. We apply the improved algorithm to encode the Fashion-MNIST dataset [2], which can be directly used in future empirical studies of quantum machine learning algorithms. We deploy simple quantum variational classifiers trained on the encoded dataset on a current quantum computer ibmq-kolkata [3] and achieve moderate accuracies, providing a proof of concept for the near-term usability of our data encoding method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Ibm quantum, https://quantum.ibm.com/ (2021).
  2. V. Dunjko, J. M. Taylor, and H. J. Briegel, Physical Review Letters 117, 130501 (2016), publisher: American Physical Society.
  3. V. Dunjko and H. J. Briegel, Reports on Progress in Physics 81, 074001 (2018).
  4. S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning (2013), arXiv:1307.0411 [quant-ph].
  5. P. Rebentrost, M. Mohseni, and S. Lloyd, Physical Review Letters 113, 130503 (2014), arXiv:1307.0471 [quant-ph].
  6. A. W. Harrow, A. Hassidim, and S. Lloyd, Physical Review Letters 103, 150502 (2009), arXiv:0811.3171 [quant-ph].
  7. V. Giovannetti, S. Lloyd, and L. Maccone, Physical Review Letters 100, 160501 (2008), arXiv:0708.1879 [quant-ph].
  8. E. Tang, Physical Review Letters 127, 060503 (2021), arXiv:1811.00414 [quant-ph].
  9. A. Gilyén, Z. Song, and E. Tang, Quantum 6, 754 (2022), arXiv:2009.07268 [quant-ph].
  10. J. Preskill, Quantum 2, 79 (2018), arXiv:1801.00862 [cond-mat, physics:quant-ph].
  11. M. Schuld and N. Killoran, Physical Review Letters 122, 040504 (2019).
  12. Y. Liu, S. Arunachalam, and K. Temme, Nature Physics 17, 1013 (2021).
  13. E. M. Stoudenmire and D. J. Schwab, Supervised Learning with Quantum-Inspired Tensor Networks (2017), arXiv:1605.05775 [cond-mat, stat].
  14. J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, Physical Review Letters 92, 177902 (2004), publisher: American Physical Society.
  15. M. Plesch and  . Brukner, Physical Review A 83, 032302 (2011), publisher: American Physical Society.
  16. M. Schuld, R. Sweke, and J. J. Meyer, Physical Review A 103, 032430 (2021).
  17. A. Chalumuri, R. Kune, and B. S. Manoj, Quantum Information Processing 20, 119 (2021), aDS Bibcode: 2021QuIP…20..119C.
  18. T. Haug, C. N. Self, and M. S. Kim, Machine Learning: Science and Technology 4, 015005 (2023), publisher: IOP Publishing.
  19. I. Kerenidis and A. Luongo, Physical Review A 101, 062327 (2020), arXiv:1805.08837 [quant-ph].
  20. T. Hur, L. Kim, and D. K. Park, Quantum Machine Intelligence 4, 3 (2022).
  21. U. Schollwoeck, Annals of Physics 326, 96 (2011), arXiv:1008.3477 [cond-mat].
  22. S.-J. Ran, Physical Review A 101, 032310 (2020), arXiv:1908.07958 [cond-mat, physics:quant-ph].
  23. P. Q. Le, F. Dong, and K. Hirota, Quantum Information Processing 10, 63 (2011).
  24. J. Iaconis and S. Johri, Tensor Network Based Efficient Quantum Data Loading of Images (2023), arXiv:2310.05897 [quant-ph].
  25. F. Vatan and C. Williams, Physical Review A 69, 032315 (2004), publisher: American Physical Society.
  26. B. Kraus and J. I. Cirac, Physical Review A 63, 062309 (2001), publisher: American Physical Society.
  27. V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, NY, 2000).
  28. C. Burges and C. J. Burges, Data Mining and Knowledge Discovery 2, 121 (1998).
  29. C.-W. Hsu and C.-J. Lin, IEEE Transactions on Neural Networks 13, 415 (2002), conference Name: IEEE Transactions on Neural Networks.
  30. J. Weston and C. Watkins (1999) pp. 219–224.
  31. R. E. Bechhofer, S. Elmaghraby, and N. Morse, The Annals of Mathematical Statistics 30, 102 (1959), publisher: Institute of Mathematical Statistics.
  32. D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization (2017), arXiv:1412.6980 [cs].
  33. I. A. Luchnikov, M. E. Krechetov, and S. N. Filippov, New Journal of Physics 23, 073006 (2021b), arXiv:2007.01287 [quant-ph] .
  34. Z.-Y. Wei, D. Malz, and J. I. Cirac, Physical Review Letters 128, 010607 (2022), publisher: American Physical Society.
  35. G. Vidal, Physical Review Letters 101, 110501 (2008), arXiv:quant-ph/0610099 [quant-ph] .
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com