Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projected Newton method for large-scale Bayesian linear inverse problems (2403.01920v1)

Published 4 Mar 2024 in math.NA and cs.NA

Abstract: Computing the regularized solution of Bayesian linear inverse problems as well as the corresponding regularization parameter is highly desirable in many applications. This paper proposes a novel iterative method, termed the Projected Newton method (PNT), that can simultaneously update the regularization parameter and solution step by step without requiring any high-cost matrix inversions or decompositions. By reformulating the Tikhonov regularization as a constrained minimization problem and writing its Lagrangian function, a Newton-type method coupled with a Krylov subspace method, called the generalized Golub-Kahan bidiagonalization, is employed for the unconstrained Lagrangian function. The resulting PNT algorithm only needs solving a small-scale linear system to get a descent direction of a merit function at each iteration, thus significantly reducing computational overhead. Rigorous convergence results are proved, showing that PNT always converges to the unique regularized solution and the corresponding Lagrangian multiplier. Experimental results on both small and large-scale Bayesian inverse problems demonstrate its excellent convergence property, robustness and efficiency. Given that the most demanding computational tasks in PNT are primarily matrix-vector products, it is particularly well-suited for large-scale problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process., 20(3):681–695, 2010.
  2. F. S. V. Bazán. Fixed-point iterations in determining the Tikhonov regularization parameter. Inverse Probl., 24(3):035001, 2008.
  3. A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.
  4. Frontiers in numerical analysis: Durham 2002. Springer Science & Business Media, 2003.
  5. P. N. Brown and Y. Saad. Convergence theory of nonlinear newton–krylov algorithms. SIAM J. Optim., 4(2):297–330, 1994.
  6. T. Buzug. Computed Tomography. Springer, 2008.
  7. Priorconditioned CGLS-based quasi-MAP estimate, statistical stopping rule, and ranking of priors. SIAM J. Sci. Comput., 39(5):S477–S500, 2017.
  8. Bayes meets Krylov: Statistically inspired preconditioners for CGLS. SIAM Rev., 60(2):429–461, 2018.
  9. D. Calvetti and E. Somersalo. Priorconditioners for linear systems. Inverse Probl., 21(4):1397, 2005.
  10. N. A. Caruso and P. Novati. Convergence analysis of LSQR for compact operator equations. Linear Algebra Appl., 583:146–164, 2019.
  11. A weighted-GCV method for Lanczos-hybrid regularization. Electr. Trans. Numer. Anal., 28(29):149–167, 2008.
  12. J. Chung and A. K. Saibaba. Generalized hybrid iterative methods for large-scale Bayesian inverse problems. SIAM J. Sci. Comput., 39(5):S24–S46, 2017.
  13. Projected Newton method for noise constrained Tikhonov regularization. Inverse Probl., 36(5):055002, 2020.
  14. J. Cornelis and W. Vanroose. Projected Newton method for noise constrained ell_p regularization. Inverse Probl., 36(12):125004, 2020.
  15. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math., 57(11):1413–1457, 2004.
  16. Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst., 19(1):412–441, 2020.
  17. IR Tools: A MATLAB package of iterative regularization methods and large-scale test problems. Numer. Algor., 81(3):773–811, 2019.
  18. S. Gazzola and P. Novati. Automatic parameter setting for Arnoldi–Tikhonov methods. J. Comput. Appl. Math., 256:180–195, 2014.
  19. On Krylov projection methods and Tikhonov regularization. Electr. Trans. Numer. Anal., 44:83–123, 2015.
  20. S. Gazzola and M. Sabaté Landman. Krylov methods for inverse problems: Surveying classical, and introducing new, algorithmic approaches. GAMM-Mitteilungen, 43(4):e202000017, 2020.
  21. T. Goldstein and S. Osher. The split Bregman method for l1-regularized problems. SIAM J. Imaging Sci., 2(2):323–343, 2009.
  22. Generalized Cross-Validation as a method for choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.
  23. P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 34(4):561–580, 1992.
  24. P. C. Hansen. Regularization Tools version 4.0 for Matlab 7.3. Numer. Algor., 46(2):189–194, 2007.
  25. Deblurring Images: Matrices, Spectra and Filtering. SIAM, Philadelphia, 2006.
  26. On the choice of subspace for large-scale Tikhonov regularization problems in general form. Numer. Algor., 81:33–55, 2019.
  27. Z. Jia and H. Li. The joint bidiagonalization method for large GSVD computations in finite precision. SIAM J. Matrix Anal. Appl., 44(1):382–407, 2023.
  28. N. Jorge and J. W. Stephen. Numerical Optimization. Spinger, 2006.
  29. J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems. Springer, 2006.
  30. A projection–based approach to general-form Tikhonov regularization. SIAM J. Sci. Comput., 29(1):315–330, 2007.
  31. K. Z. Kody Law, Andrew Stuart. Data Assimilation: A Mathematical Introduction. Springer, 2015.
  32. G. Landi. The Lagrange method for the regularization of discrete ill-posed problems. Comput. Optim. Appl., 39(3):347–368, 2008.
  33. H. Li. A preconditioned Krylov subspace method for linear inverse problems with general-form Tikhonov regularization. arXiv:2308.06577v1, 2023.
  34. H. Li. Subspace projection regularization for large-scale Bayesian linear inverse problems. arXiv preprint, arXiv:2310.18618, 2023.
  35. H. Li. The joint bidiagonalization of a matrix pair with inaccurate inner iterations. SIAM J. Matrix Anal. Appl., 45(1):232–259, 2024.
  36. J. Liesen and Z. Strakos. Krylov subspace methods: principles and analysis. Numerical Mathematics and Scie, 2013.
  37. N. Luiken and T. Van Leeuwen. Relaxed regularization for linear inverse problems. SIAM J. Sci. Comput., 43(5):S269–S292, 2021.
  38. A Newton root-finding algorithm for estimating the regularization parameter for solving ill-conditioned least squares problems. Inverse Probl., 25(2):025002, 2008.
  39. Orthogonal projection regularization operators. Numer. Algor., 44:99–114, 2007.
  40. V. A. Morozov. Regularization of incorrectly posed problems and the choice of regularization parameter. USSR Computational Mathematics and Mathematical Physics, 6(1):242–251, 1966.
  41. A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems. SIAM J. Sci. Statist. Comput., 2(4):474–489, 1981.
  42. An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul., 4(2):460–489, 2005.
  43. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal., 12(4):617–629, 1975.
  44. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software, 8:43–71, 1982.
  45. Tikhonov regularization based on generalized Krylov subspace methods. Appl. Numer. Math., 62(9):1215–1228, 2012.
  46. L. Reichel and A. Shyshkov. A new zero-finder for tikhonov regularization. BIT Numer. Math., 48:627–643, 2008.
  47. Unbiased predictive risk estimation of the tikhonov regularization parameter: convergence with increasing rank approximations of the singular value decomposition. BIT Numer. Math., 59:1031–1061, 2019.
  48. Hybrid and iteratively reweighted regularization by unbiased predictive risk and weighted GCV for projected systems. SIAM J. Sci. Comput., 39(2):B221–B243, 2017.
  49. M. Richter. Inverse Problems: Basics, Theory and Applications in Geophysics. Springer, 2016.
  50. Efficient Krylov subspace methods for uncertainty quantification in large Bayesian linear inverse problems. Numer. Linear Algebra Appl., 27(5):e2325, 2020.
  51. A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numer., 19:451–559, 2010.
  52. W. Tian and X. Yuan. Linearized primal-dual methods for linear inverse problems with total variation regularization and finite element discretization. Inverse Probl., 32(11):115011, 2016.
  53. C. F. Van Loan. Generalizing the singular value decomposition. SIAM J. Numer. Anal., 13(1):76–83, 1976.
  54. Bregman iterative algorithms for \\\backslash\ell_1-minimization with applications to compressed sensing. SIAM J. Imaging Sci., 1(1):143–168, 2008.

Summary

We haven't generated a summary for this paper yet.