Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On $3$-dimensional MRD codes of type $\langle x^{q^t},x+δ x^{q^{2t}},G(x) \rangle$ (2403.01887v1)

Published 4 Mar 2024 in cs.IT, math.AG, and math.IT

Abstract: In this work we present results on the classification of $\mathbb{F}{qn}$-linear MRD codes of dimension three. In particular, using connections with certain algebraic varieties over finite fields, we provide non-existence results for MRD codes $\mathcal{C}=\langle x{qt}, F(x), G(x) \rangle \subseteq \mathcal{L}{n,q}$ of exceptional type, i.e. such that $\mathcal{C}$ is MRD over infinite many extensions of the field $\mathbb{F}_{qn}$. These results partially address a conjecture of Bartoli, Zini and Zullo in 2023.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. Y. Aubry, G. McGuire and F. Rodier. A few more functions that are not APN infinitely often, finite fields theory and applications. Contemporary Math., 518:23–31, 2010.
  2. D. Bartoli, G. Fatabbi and F. Ghiandoni. On the exceptionality of rational APN functions. Des. Codes Cryptogr., 91(10):3167–3186, 2023.
  3. Scattered trinomials of 𝔽q6⁢[X]subscript𝔽superscript𝑞6delimited-[]𝑋\mathbb{F}_{q^{6}}[X]blackboard_F start_POSTSUBSCRIPT italic_q start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ italic_X ] in even characteristic. arXiv:2307.12829, 2023.
  4. Exceptional scattered sequences. arXiv:2211.11477, 2022.
  5. On a conjecture on APN permutations. Cryptogr. Commun., 14(4):925–931, 2022.
  6. D. Bartoli, C. Zanella and F. Zullo. A new family of maximum scattered linear sets in PG(1,q6).1superscript𝑞6(1,q^{6}).( 1 , italic_q start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT ) . Ars Math. Contemporanea, 19(1):125-145, 2020
  7. Exceptional scattered polynomials. J. Algebra, 509:507–534, 2018.
  8. Asymptotics of Moore exponent sets. J. Comb. Theory Ser. A, 175:105281, 2020.
  9. D. Bartoli, G. Zini and F. Zullo. Linear Maximum Rank Distance Codes of Exceptional Type IEEE Tran. Inf. Theory, 69(6):3627–3636, 2023.
  10. Scattered spaces with respect to a spread in PG(n,q).𝑛𝑞(n,q).( italic_n , italic_q ) . Geometriae Dedicata, 81(1):231–243, 2000.
  11. A. Cafure and G. Matera. Improved explicit estimates on the number of solutions of equations over a finite field. Finite Fields Appl., 12(2):155–185, 2006.
  12. A new family of MRD-codes. Linear Algebra Appl., 548:203–220, 2018.
  13. Maximum scattered linear sets and MRD codes. J. Algebraic Comb., 46(3-4):517–531, 2017.
  14. Generalising the scattered property of subspaces. Combinatorica, 41(2):237–262, 2021.
  15. B. Csajbók, G. Marino and F. Zullo, New maximum scattered linear sets of the projective line. Finite Fields Their Appl., 54:133–150, 2018.
  16. P. Delsarte. Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A, 25(3):226–241, 1978.
  17. E.M. Gabidulin. Theory of codes with maximum rank distance. Problemy Peredachi Informatsii, 21(1):3–16, 1985.
  18. Linear sets and MRD-codes arising from a class of scattered linearized polynomials. J. Algebr. Combinatorics, 53:639–661, 2021.
  19. G. Lunardon, R. Trombetti and Y. Zhou, On kernels and nuclei of rank metric codes. J. Algebr. Combinat., 46(2):313–340, 2017.
  20. G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted Gabidulin codes. J. Comb. Theory Ser. A, 159:79–106, 2018.
  21. Proof of a conjecture on the sequence of exceptional numbers classifying cyclic codes and APN functions. J. Algebra, 343:78–92, 2011.
  22. J. W. P. Hirschfeld, G. Korchmáros and F. Torres. Algebraic Curves over a Finite Field. Princeton Series in Applied Mathematics, Princeton. 2008.
  23. H. Janwa, G. McGuire and R. Wilson. Double-error correcting cyclic codes and absolutely irreducible polynomials over G⁢F⁢(2)𝐺𝐹2GF(2)italic_G italic_F ( 2 ). J. Algebra, 178:665–676, 1995.
  24. D. Jedlicka. APN monomials over G⁢F⁢(2n)𝐺𝐹superscript2𝑛GF(2^{n})italic_G italic_F ( 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) for infinitely many n𝑛nitalic_n. Finite Fields Appl., 13:1006–1028, 2007.
  25. Coding for errors and erasure in random network coding. IEEE Trans. Inform. Theory, 54(8):3579-3591, 2008.
  26. A. Neri, P. Santonastaso and F. Zullo. Extending two families of maximum rank distance codes Finite Fields Their Appl., 81:102045, 2022.
  27. Divisible Linear Rank Metric Codes IEEE Trans. Inf. Theory, 69(7):4528-4536, 2023.
  28. Planar functions over fields of characteristic two. J. Algebraic Comb., 40:503–526, 2014.
  29. J. Sheekey. A new family of linear maximum rank distance codes. Adv. Math. Commun., 10(3):475-488, 2016.
  30. On a family of linear MRD codes with parameters [8×8,16,7]qsubscript88167𝑞[8\times 8,16,7]_{q}[ 8 × 8 , 16 , 7 ] start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT, Des. Codes Cryptogr. DOI:10.1007/s10623-022-01179-0, 2023.
  31. C. Zanella, A condition for scattered linearized polynomials involving Dickson matrices. J. Geometry, 110(3):1–9, 2019.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.