A Safe Screening Rule with Bi-level Optimization of $ν$ Support Vector Machine (2403.01769v1)
Abstract: Support vector machine (SVM) has achieved many successes in machine learning, especially for a small sample problem. As a famous extension of the traditional SVM, the $\nu$ support vector machine ($\nu$-SVM) has shown outstanding performance due to its great model interpretability. However, it still faces challenges in training overhead for large-scale problems. To address this issue, we propose a safe screening rule with bi-level optimization for $\nu$-SVM (SRBO-$\nu$-SVM) which can screen out inactive samples before training and reduce the computational cost without sacrificing the prediction accuracy. Our SRBO-$\nu$-SVM is strictly deduced by integrating the Karush-Kuhn-Tucker (KKT) conditions, the variational inequalities of convex problems and the $\nu$-property. Furthermore, we develop an efficient dual coordinate descent method (DCDM) to further improve computational speed. Finally, a unified framework for SRBO is proposed to accelerate many SVM-type models, and it is successfully applied to one-class SVM. Experimental results on 6 artificial data sets and 30 benchmark data sets have verified the effectiveness and safety of our proposed methods in supervised and unsupervised tasks.
- doi:10.1162/089976600300015565.
- doi:10.1016/j.neunet.2009.08.001.
- doi:10.1162/089976601750264965.
- doi:10.1016/j.neucom.2014.05.035.
- arXiv:1802.06360.
- doi:10.1023/B:MACH.0000008084.60811.49.
- doi:10.1162/089976601750399335.
- doi:10.1109/tpami.2003.1233901.
- doi:10.1145/1961189.1961199.
- doi:10.1145/1390156.1390208.
- doi:10.1109/ICNNSP.2003.1279203.
- arXiv:1211.3966.
- arXiv:1307.4145.
- doi:10.1109/ICASSP39728.2021.9414183.
- doi:10.1016/j.knosys.2019.105223.
- doi:10.1016/j.knosys.2018.02.010.
- doi:https://doi.org/10.1016/j.patcog.2018.06.018.
- doi:10.1016/j.patcog.2021.107860.
- doi:10.1109/TNN.2011.2130540.
- doi:10.1007/s10489-013-0500-2.
- doi:10.1007/978-0-387-68407-9.
- M. Lichman, UCI machine learning repository (2013).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.