Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive multiplication of $\mathcal{H}^2$-matrices with block-relative error control (2403.01566v2)

Published 3 Mar 2024 in math.NA and cs.NA

Abstract: The discretization of non-local operators, e.g., solution operators of partial differential equations or integral operators, leads to large densely populated matrices. $\mathcal{H}2$-matrices take advantage of local low-rank structures in these matrices to provide an efficient data-sparse approximation that allows us to handle large matrices efficiently, e.g., to reduce the storage requirements to $\mathcal{O}(n k)$ for $n$-dimensional matrices with local rank $k$, and to reduce the complexity of the matrix-vector multiplication to $\mathcal{O}(n k)$ operations. In order to perform more advanced operations, e.g., to construct efficient preconditioners or evaluate matrix functions, we require algorithms that take $\mathcal{H}2$-matrices as input and approximate the result again by $\mathcal{H}2$-matrices, ideally with controllable accuracy. In this manuscript, we introduce an algorithm that approximates the product of two $\mathcal{H}2$-matrices and guarantees block-relative error estimates for the submatrices of the result. It uses specialized tree structures to represent the exact product in an intermediate step, thereby allowing us to apply mathematically rigorous error control strategies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. U. Baur. Low rank solution of data-sparse Sylvester equations. Numer. Lin. Alg. Appl., 15:837–851, 2008.
  2. S. Börm. ℋ2superscriptℋ2{\mathcal{H}}^{2}caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-matrix arithmetics in linear complexity. Computing, 77(1):1–28, 2006.
  3. S. Börm. Efficient Numerical Methods for Non-local Operators: ℋ2superscriptℋ2{\mathcal{H}}^{2}caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-Matrix Compression, Algorithms and Analysis, volume 14 of EMS Tracts in Mathematics. EMS, 2010.
  4. S. Börm. On iterated interpolation. SIAM Num. Anal., 60(6):3124–3144, 2022.
  5. S. Börm and L. Grasedyck. Hybrid cross approximation of integral operators. Numer. Math., 101:221–249, 2005.
  6. S. Börm and W. Hackbusch. Data-sparse approximation by adaptive ℋ2superscriptℋ2{\mathcal{H}}^{2}caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-matrices. Computing, 69:1–35, 2002.
  7. S. Börm and K. Reimer. Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates. Comp. Vis. Sci., 16(6):247–258, 2015.
  8. S. Börm and S. A. Sauter. BEM with linear complexity for the classical boundary integral operators. Math. Comp., 74:1139–1177, 2005.
  9. A fast adaptive solver for hierarchically semiseparable representations. Calcolo, 42:171–185, 2005.
  10. ℋℋ\mathcal{H}caligraphic_H-matrix approximation for the operator exponential with applications. Numer. Math., 92:83–111, 2002.
  11. L. Grasedyck. Existence of a low-rank or ℋℋ\mathcal{H}caligraphic_H-matrix approximant to the solution of a Sylvester equation. Numer. Lin. Alg. Appl., 11:371–389, 2004.
  12. L. Grasedyck and W. Hackbusch. Construction and arithmetics of ℋℋ{\mathcal{H}}caligraphic_H-matrices. Computing, 70:295–334, 2003.
  13. Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices. Computing, 70:121–165, 2003.
  14. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Phys., 73:325–348, 1987.
  15. L. Greengard and V. Rokhlin. A new version of the fast multipole method for the Laplace equation in three dimensions. In Acta Numerica 1997, pages 229–269. Cambridge University Press, 1997.
  16. W. Hackbusch. A sparse matrix arithmetic based on ℋℋ\mathcal{H}caligraphic_H-matrices. Part I: Introduction to ℋℋ\mathcal{H}caligraphic_H-matrices. Computing, 62(2):89–108, 1999.
  17. W. Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Springer, 2015.
  18. Hierarchical matrices based on a weak admissibility criterion. Computing, 73:207–243, 2004.
  19. On ℋ2superscriptℋ2\mathcal{H}^{2}caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-matrices. In H. Bungartz, R. Hoppe, and C. Zenger, editors, Lectures on Applied Mathematics, pages 9–29. Springer-Verlag, Berlin, 2000.
  20. W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math., 54(4):463–491, 1989.
  21. V. Rokhlin. Rapid solution of integral equations of classical potential theory. J. Comp. Phys., 60:187–207, 1985.
  22. S. A. Sauter. Variable order panel clustering. Computing, 64:223–261, 2000.
  23. Fast algorithms for hierarchically semiseparable matrices. Numer. Lin. Alg. Appl., 2009. available at http://dx.doi.org/10.1002/nla.691.

Summary

We haven't generated a summary for this paper yet.