Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training Computer Scientists for the Challenges of Hybrid Quantum-Classical Computing (2403.00885v1)

Published 1 Mar 2024 in physics.ed-ph, cs.DC, cs.ET, and quant-ph

Abstract: As we enter the post-Moore era, we experience the rise of various non-von-Neumann-architectures to address the increasing computational demand for modern applications, with quantum computing being among the most prominent and promising technologies. However, this development creates a gap in current computer science curricula since most quantum computing lectures are strongly physics-oriented and have little intersection with the remaining curriculum of computer science. This fact makes designing an appealing course very difficult, in particular for non-physicists. Furthermore, in the academic community, there is consensus that quantum computers are going to be used only for specific computational tasks (e.g., in computational science), where hybrid systems - combined classical and quantum computers - facilitate the execution of an application on both quantum and classical computing resources. A hybrid system thus executes only certain suitable parts of an application on the quantum machine, while other parts are executed on the classical components of the system. To fully exploit the capabilities of hybrid systems and to meet future requirements in this emerging field, we need to prepare a new generation of computer scientists with skills in both distributed computing and quantum computing. To bridge this existing gap in standard computer science curricula, we designed a new lecture and exercise series on Hybrid Quantum-Classical Systems, where students learn how to decompose applications and implement computational tasks on a hybrid quantum-classical computational continuum. While learning the inherent concepts underlying quantum systems, students are obligated to apply techniques and methods they are already familiar with, making the entrance to the field of quantum computing comprehensive yet appealing and accessible to students of computer science.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. K. A. Britt and T. S. Humble, “High-performance computing with quantum processing units,” J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, 2017. [Online]. Available: https://doi.org/10.1145/3007651
  2. K. Bertels, A. Sarkar, A. Krol, R. Budhrani, J. Samadi, E. Geoffroy, J. Matos, R. Abreu, G. Gielen, and I. Ashraf, “Quantum Accelerator Stack: A Research Roadmap,” 2021. [Online]. Available: https://arxiv.org/abs/2102.02035
  3. T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowrishankar, A. Frisch, and T. Monz, “Quantum computers for high-performance computing,” IEEE Micro, vol. 41, no. 5, pp. 15–23, 2021.
  4. M. Ruefenacht, B. G. Taketani, P. Lähteenmäki, V. Bergholm, D. A. Kranzlmüller, L. B. Schulz, and M. Schulz, “Bringing quantum acceleration to supercomputers,” 2022. [Online]. Available: https://www.quantum.lrz.de/fileadmin/QIC/Downloads/IQM_HPC-QC-Integration-Whitepaper.pdf
  5. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1666-5
  6. H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science, vol. 370, no. 6523, pp. 1460–1463, 2020. [Online]. Available: https://doi.org/10.1126/science.abe8770
  7. I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. Jacob, O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. Stadler, B. Höfer, C. Wächter, K. Lakhmanskiy, R. Blatt, P. Schindler, and T. Monz, “Compact ion-trap quantum computing demonstrator,” PRX Quantum, vol. 2, no. 2, 2021. [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.020343
  8. L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, J. F. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins, A. E. Lita, T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I. Dhand, Z. Vernon, N. Quesada, and J. Lavoie, “Quantum computational advantage with a programmable photonic processor,” Nature, vol. 606, no. 7912, pp. 75–81, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04725-x
  9. D. Castelvecchi, “Ibm releases first-ever 1, 000-qubit quantum chip,” Nature, 2023. [Online]. Available: https://doi.org/10.1038/d41586-023-03854-1
  10. D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz, S. Ebadi, M. Cain, M. Kalinowski, D. Hangleiter, J. P. B. Ataides, N. Maskara, I. Cong, X. Gao, P. S. Rodriguez, T. Karolyshyn, G. Semeghini, M. J. Gullans, M. Greiner, V. Vuletić, and M. D. Lukin, “Logical quantum processor based on reconfigurable atom arrays,” Nature, 2023. [Online]. Available: https://doi.org/10.1038/s41586-023-06927-3
  11. “News — Munich Quantum Valley — munich-quantum-valley.de,” https://www.munich-quantum-valley.de/news-events/detail/trapped-ion-quantum-computer-for-mqv, [Accessed 26-02-2024].
  12. M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, “Challenges and opportunities in quantum machine learning,” Nat. Comput. Sci., vol. 2, no. 9, pp. 567–576, 2022. [Online]. Available: https://doi.org/10.1038/s43588-022-00311-3
  13. A. Bayerstadler, G. Becquin, J. Binder, T. Botter, H. Ehm, T. Ehmer, M. Erdmann, N. Gaus, P. Harbach, M. Hess, J. Klepsch, M. Leib, S. Luber, A. Luckow, M. Mansky, W. Mauerer, F. Neukart, C. Niedermeier, L. Palackal, R. Pfeiffer, C. Polenz, J. Sepulveda, T. Sievers, B. Standen, M. Streif, T. Strohm, C. Utschig-Utschig, D. Volz, H. Weiss, and F. Winter, “Industry quantum computing applications,” EPJ Quantum Technology, vol. 8, no. 1, 2021. [Online]. Available: https://doi.org/10.1140/epjqt/s40507-021-00114-x
  14. M. Weigold, J. Barzen, F. Leymann, and M. Salm, “Data encoding patterns for quantum computing,” in Proceedings of the 27th Conference on Pattern Languages of Programs, ser. PLoP ’20.   USA: The Hillside Group, 2022. [Online]. Available: https://hillside.net/plop/2020/papers/weigold.pdf
  15. “IBM Quantum Computing — Qiskit — ibm.com,” https://www.ibm.com/quantum/qiskit, [Accessed 26-02-2024].
  16. “IBM Quantum Learning — learning.quantum.ibm.com,” https://learning.quantum.ibm.com/, [Accessed 26-02-2024].
  17. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a photonic quantum processor,” Nat. Commun., vol. 5, no. 1, 2014. [Online]. Available: https://doi.org/10.1038/ncomms5213
  18. L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices,” Phys. Rev. X, vol. 10, p. 021067, 2020. [Online]. Available: https://doi.org/10.1103/PhysRevX.10.021067
  19. V. Dunjko and H. J. Briegel, “Machine learning & artificial intelligence in the quantum domain: a review of recent progress,” Rep. Prog. Phys., vol. 81, p. 074001, 2018. [Online]. Available: https://doi.org/10.1088/1361-6633/aab406
  20. C. Couteau, S. Barz, T. Durt, T. Gerrits, J. Huwer, R. Prevedel, J. Rarity, A. Shields, and G. Weihs, “Applications of single photons to quantum communication and computing,” Nature Reviews Physics, vol. 5, no. 6, pp. 326–338, 2023. [Online]. Available: https://doi.org/10.1038/s42254-023-00583-2
  21. S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for beginners,” Rep. Progr. Phys., vol. 76, no. 7, p. 076001, 2013. [Online]. Available: https://doi.org/10.1088/0034-4885/76/7/076001
  22. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, “Variational quantum algorithms,” Nat. Rev. Phys., vol. 3, no. 9, pp. 625–644, 2021. [Online]. Available: https://doi.org/10.1038/s42254-021-00348-9
  23. H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest, “Measurement-based quantum computation,” Nat. Phys., vol. 5, no. 1, pp. 19–26, 2009. [Online]. Available: https://doi.org/10.1038/nphys1157
  24. B. Coecke and R. Duncan, “Interacting quantum observables: categorical algebra and diagrammatics,” New J. Phys., vol. 13, no. 4, p. 043016, 2011. [Online]. Available: https://doi.org/10.1088/1367-2630/13/4/043016
  25. A. Kitaev, “Fault-tolerant quantum computation by anyons,” Ann. Phys., vol. 303, no. 1, pp. 2–30, 2003. [Online]. Available: https://doi.org/10.1016/S0003-4916(02)00018-0
  26. W. Dür and S. Heusler, “What we can learn about quantum physics from a single qubit,” 2013. [Online]. Available: https://arxiv.org/abs/1312.1463
  27. S. S. Cranganore, V. D. Maio, I. Brandic, T. M. A. Do, and E. Deelman, “Molecular dynamics workflow decomposition for hybrid classic/quantum systems,” in 18th IEEE International Conference on e-Science, e-Science 2022, Salt Lake City, UT, USA, October 11-14, 2022.   IEEE, 2022, pp. 346–356. [Online]. Available: https://doi.org/10.1109/eScience55777.2022.00048
  28. P.-L. Dallaire-Demers, J. Romero, L. Veis, S. Sim, and A. Aspuru-Guzik, “Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer,” 2018. [Online]. Available: https://arxiv.org/abs/1801.01053
  29. X. Xu, S. C. Benjamin, and X. Yuan, “Variational circuit compiler for quantum error correction,” Phys. Rev. Appl., vol. 15, no. 3, 2021. [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.034068
  30. E. Deelman, R. Ferreira da Silva, K. Vahi, M. Rynge, R. Mayani, R. Tanaka, W. Whitcup, and M. Livny, “The pegasus workflow management system: Translational computer science in practice,” J. Comput. Sci., vol. 52, p. 101200, 2021. [Online]. Available: https://doi.org/10.1016/j.jocs.2020.101200
  31. “Quanten-Cloud-Computing-Service – Amazon Braket – AWS — aws.amazon.com,” https://aws.amazon.com/de/braket/, [Accessed 26-02-2024].
  32. “Quantum Computer Programming 2022-II — fagonzalezo.github.io,” https://fagonzalezo.github.io/qcp-2022-2/, [Accessed 26-02-2024].
  33. “Introduction to the Programming of Quantum Computers — studies.helsinki.fi,” https://studies.helsinki.fi/courses/course-implementation/hy-opt-cur-2324-b9fb29c5-c7f4-4665-af3f-a0e85b6b17be/CSM14211, [Accessed 26-02-2024].
  34. “Programming Quantum Computers — Indiana University,” https://legacy.cs.indiana.edu/classes/c290-quantum-dgerman/, [Accessed 26-02-2024].
  35. “Quantum ECSE-4964/6964 Quantum Computer Programming, Fall 2022, Rensselaer Polytechnic Institute — wrfranklin.org,” https://wrfranklin.org/nikola/Teaching/quantum-f2022/blog/, [Accessed 26-02-2024].
  36. “FI:PV275 Intro to Quantum Programming - Course Information — is.muni.cz,” https://is.muni.cz/course/fi/autumn2020/PV275, [Accessed 26-02-2024].
  37. “CS 8803-O13: Quantum Computing — OMSCS — Georgia Institute of Technology — Atlanta, GA — omscs.gatech.edu,” https://omscs.gatech.edu/cs-8803-o13-quantum-computing, [Accessed 26-02-2024].
  38. “Quantum Programming — bilakniha.cvut.cz,” https://bilakniha.cvut.cz/en/predmet6683806.html, [Accessed 26-02-2024].
  39. “CS 269Q: Elements of Quantum Computer Programming — cs269q.stanford.edu,” https://cs269q.stanford.edu/, [Accessed 26-02-2024].
  40. “High-Performance Computing / Quantum Computing— DIT — th-deg.de,” https://www.th-deg.de/qc-m-en, [Accessed 26-02-2024].
  41. C. H. Crouch and E. Mazur, “Peer Instruction: Ten years of experience and results,” Am. J. Physics, vol. 69, no. 9, pp. 970–977, 2001. [Online]. Available: https://doi.org/10.1119/1.1374249
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Vincenzo De Maio (8 papers)
  2. Meerzhan Kanatbekova (2 papers)
  3. Felix Zilk (3 papers)
  4. Nicolai Friis (52 papers)
  5. Tobias Guggemos (6 papers)
  6. Ivona Brandic (29 papers)

Summary

We haven't generated a summary for this paper yet.