Papers
Topics
Authors
Recent
2000 character limit reached

Structure Similarity Preservation Learning for Asymmetric Image Retrieval (2403.00648v1)

Published 1 Mar 2024 in eess.IV

Abstract: Asymmetric image retrieval is a task that seeks to balance retrieval accuracy and efficiency by leveraging lightweight and large models for the query and gallery sides, respectively. The key to asymmetric image retrieval is realizing feature compatibility between different models. Despite the great progress, most existing approaches either rely on classifiers inherited from gallery models or simply impose constraints at the instance level, ignoring the structure of embedding space. In this work, we propose a simple yet effective structure similarity preserving method to achieve feature compatibility between query and gallery models. Specifically, we first train a product quantizer offline with the image features embedded by the gallery model. The centroid vectors in the quantizer serve as anchor points in the embedding space of the gallery model to characterize its structure. During the training of the query model, anchor points are shared by the query and gallery models. The relationships between image features and centroid vectors are considered as structure similarities and constrained to be consistent. Moreover, our approach makes no assumption about the existence of any labeled training data and thus can be extended to an unlimited amount of data. Comprehensive experiments on large-scale landmark retrieval demonstrate the effectiveness of our approach. Our code is released at: https://github.com/MCC-WH/SSP.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.