Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TEXterity -- Tactile Extrinsic deXterity: Simultaneous Tactile Estimation and Control for Extrinsic Dexterity (2403.00049v2)

Published 29 Feb 2024 in cs.RO

Abstract: We introduce a novel approach that combines tactile estimation and control for in-hand object manipulation. By integrating measurements from robot kinematics and an image-based tactile sensor, our framework estimates and tracks object pose while simultaneously generating motion plans in a receding horizon fashion to control the pose of a grasped object. This approach consists of a discrete pose estimator that tracks the most likely sequence of object poses in a coarsely discretized grid, and a continuous pose estimator-controller to refine the pose estimate and accurately manipulate the pose of the grasped object. Our method is tested on diverse objects and configurations, achieving desired manipulation objectives and outperforming single-shot methods in estimation accuracy. The proposed approach holds potential for tasks requiring precise manipulation and limited intrinsic in-hand dexterity under visual occlusion, laying the foundation for closed-loop behavior in applications such as regrasping, insertion, and tool use. Please see https://sites.google.com/view/texterity for videos of real-world demonstrations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. M. Bauza, F. R. Hogan, and A. Rodriguez, “A data-efficient approach to precise and controlled pushing,” in Conference on Robot Learning.   PMLR, 2018, pp. 336–345.
  2. I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant optimization for hand manipulation,” in Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, 2012, pp. 137–144.
  3. B. Sundaralingam and T. Hermans, “Geometric in-hand regrasp planning: Alternating optimization of finger gaits and in-grasp manipulation,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 231–238.
  4. Y. Hou, Z. Jia, and M. T. Mason, “Fast planning for 3d any-pose-reorienting using pivoting,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 1631–1638.
  5. J. Shi, J. Z. Woodruff, P. B. Umbanhowar, and K. M. Lynch, “Dynamic in-hand sliding manipulation,” IEEE Transactions on Robotics, vol. 33, no. 4, pp. 778–795, 2017.
  6. B. Sundaralingam and T. Hermans, “Relaxed-rigidity constraints: kinematic trajectory optimization and collision avoidance for in-grasp manipulation,” Autonomous Robots, vol. 43, pp. 469–483, 2019.
  7. T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand object re-orientation,” in Conference on Robot Learning.   PMLR, 2022, pp. 297–307.
  8. A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine, “Learning complex dexterous manipulation with deep reinforcement learning and demonstrations,” arXiv preprint arXiv:1709.10087, 2017.
  9. T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal, “Visual dexterity: In-hand dexterous manipulation from depth,” in Icml workshop on new frontiers in learning, control, and dynamical systems, 2023.
  10. A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk, K. Van Wyk, A. Zhurkevich, B. Sundaralingam et al., “Dextreme: Transfer of agile in-hand manipulation from simulation to reality,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5977–5984.
  11. O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al., “Learning dexterous in-hand manipulation,” The International Journal of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.
  12. W. Huang, I. Mordatch, P. Abbeel, and D. Pathak, “Generalization in dexterous manipulation via geometry-aware multi-task learning,” arXiv preprint arXiv:2111.03062, 2021.
  13. W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot tactile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12, p. 2762, 2017.
  14. M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos, A. Byagowi, G. Kammerer et al., “Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 3838–3845, 2020.
  15. I. H. Taylor, S. Dong, and A. Rodriguez, “Gelslim 3.0: High-resolution measurement of shape, force and slip in a compact tactile-sensing finger,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 10 781–10 787.
  16. M. Bauza, A. Bronars, and A. Rodriguez, “Tac2pose: Tactile object pose estimation from the first touch,” The International Journal of Robotics Research, vol. 42, no. 13, pp. 1185–1209, 2023.
  17. S. Pai, T. Chen, M. Tippur, E. Adelson, A. Gupta, and P. Agrawal, “Tactofind: A tactile only system for object retrieval,” arXiv preprint arXiv:2303.13482, 2023.
  18. S. Luo, W. Yuan, E. Adelson, A. G. Cohn, and R. Fuentes, “Vitac: Feature sharing between vision and tactile sensing for cloth texture recognition,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 2722–2727.
  19. S. Kim and A. Rodriguez, “Active extrinsic contact sensing: Application to general peg-in-hole insertion,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 10 241–10 247.
  20. D. Ma, S. Dong, and A. Rodriguez, “Extrinsic contact sensing with relative-motion tracking from distributed tactile measurements,” in 2021 IEEE international conference on robotics and automation (ICRA).   IEEE, 2021, pp. 11 262–11 268.
  21. C. Higuera, S. Dong, B. Boots, and M. Mukadam, “Neural contact fields: Tracking extrinsic contact with tactile sensing,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 12 576–12 582.
  22. S. Dong, D. K. Jha, D. Romeres, S. Kim, D. Nikovski, and A. Rodriguez, “Tactile-rl for insertion: Generalization to objects of unknown geometry,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 6437–6443.
  23. F. R. Hogan, J. Ballester, S. Dong, and A. Rodriguez, “Tactile dexterity: Manipulation primitives with tactile feedback,” in 2020 IEEE international conference on robotics and automation (ICRA).   IEEE, 2020, pp. 8863–8869.
  24. Y. Shirai, D. K. Jha, A. U. Raghunathan, and D. Hong, “Tactile tool manipulation,” in 2023 International Conference on Robotics and Automation (ICRA).   IEEE, 2023.
  25. Y. She, S. Wang, S. Dong, N. Sunil, A. Rodriguez, and E. Adelson, “Cable manipulation with a tactile-reactive gripper,” The International Journal of Robotics Research, vol. 40, no. 12-14, pp. 1385–1401, 2021.
  26. N. Sunil, S. Wang, Y. She, E. Adelson, and A. Rodriguez, “Visuotactile affordances for cloth manipulation with local control,” in Conference on Robot Learning.   PMLR, 2023, pp. 1596–1606.
  27. N. C. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srinivasa, M. Erdmann, M. T. Mason, I. Lundberg, H. Staab, and T. Fuhlbrigge, “Extrinsic dexterity: In-hand manipulation with external forces,” in 2014 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2014, pp. 1578–1585.
  28. S. Kim, D. K. Jha, D. Romeres, P. Patre, and A. Rodriguez, “Simultaneous tactile estimation and control of extrinsic contact,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 12 563–12 569.
  29. A. Bronars, S. Kim, P. Patre, and A. Rodriguez, “TEXterity: Tactile Extrinsic deXterity,” 2024 IEEE International Conference on Robotics and Automation (ICRA), 2024.
  30. P. Sodhi, M. Kaess, M. Mukadam, and S. Anderson, “Learning tactile models for factor graph-based estimation,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 13 686–13 692.
  31. P. Sodhi, M. Kaess, M. Mukadanr, and S. Anderson, “Patchgraph: In-hand tactile tracking with learned surface normals,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 2164–2170.
  32. J. Zhao, M. Bauza, and E. H. Adelson, “Fingerslam: Closed-loop unknown object localization and reconstruction from visuo-tactile feedback,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 8033–8039.
  33. S. Suresh, M. Bauza, K.-T. Yu, J. G. Mangelson, A. Rodriguez, and M. Kaess, “Tactile slam: Real-time inference of shape and pose from planar pushing,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 11 322–11 328.
  34. M. Bauza, O. Canal, and A. Rodriguez, “Tactile mapping and localization from high-resolution tactile imprints,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 3811–3817.
  35. R. Li, R. Platt, W. Yuan, A. Ten Pas, N. Roscup, M. A. Srinivasan, and E. Adelson, “Localization and manipulation of small parts using gelsight tactile sensing,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2014, pp. 3988–3993.
  36. M. Bauza, A. Bronars, Y. Hou, I. Taylor, N. Chavan-Dafle, and A. Rodriguez, “simPLE: a visuotactile method learned in simulation to precisely pick, localize, regrasp, and place objects,” arXiv preprint arXiv:2307.13133, 2023.
  37. S. Dikhale, K. Patel, D. Dhingra, I. Naramura, A. Hayashi, S. Iba, and N. Jamali, “Visuotactile 6d pose estimation of an in-hand object using vision and tactile sensor data,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2148–2155, 2022.
  38. G. Izatt, G. Mirano, E. Adelson, and R. Tedrake, “Tracking objects with point clouds from vision and touch,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 4000–4007.
  39. T. Anzai and K. Takahashi, “Deep gated multi-modal learning: In-hand object pose changes estimation using tactile and image data,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 9361–9368.
  40. S. Suresh, Z. Si, S. Anderson, M. Kaess, and M. Mukadam, “Midastouch: Monte-carlo inference over distributions across sliding touch,” in Conference on Robot Learning.   PMLR, 2023, pp. 319–331.
  41. T. Kelestemur, R. Platt, and T. Padir, “Tactile pose estimation and policy learning for unknown object manipulation,” International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2022.
  42. Y. Hou, Z. Jia, and M. Mason, “Manipulation with shared grasping,” in Robotics: Science and Systems (RSS), 2020.
  43. J. Shi, H. Weng, and K. M. Lynch, “In-hand sliding regrasp with spring-sliding compliance and external constraints,” IEEE Access, vol. 8, pp. 88 729–88 744, 2020.
  44. N. Chavan-Dafle, R. Holladay, and A. Rodriguez, “In-hand manipulation via motion cones,” in Robotics: Science and Systems (RSS), 2018.
  45. N. Chavan-Dafle and A. Rodriguez, “Prehensile pushing: In-hand manipulation with push-primitives,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2015, pp. 6215–6222.
  46. A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics models for learning dexterous manipulation,” in Conference on Robot Learning.   PMLR, 2020, pp. 1101–1112.
  47. V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned local models: Application to dexterous manipulation,” in 2016 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2016, pp. 378–383.
  48. S. Tian, F. Ebert, D. Jayaraman, M. Mudigonda, C. Finn, R. Calandra, and S. Levine, “Manipulation by feel: Touch-based control with deep predictive models,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 818–824.
  49. M. Lepert, C. Pan, S. Yuan, R. Antonova, and J. Bohg, “In-hand manipulation of unknown objects with tactile sensing for insertion,” in Embracing Contacts-Workshop at ICRA 2023, 2023.
  50. J. Pitz, L. Röstel, L. Sievers, and B. Bäuml, “Dextrous tactile in-hand manipulation using a modular reinforcement learning architecture,” arXiv preprint arXiv:2303.04705, 2023.
  51. H. Van Hoof, T. Hermans, G. Neumann, and J. Peters, “Learning robot in-hand manipulation with tactile features,” in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).   IEEE, 2015, pp. 121–127.
  52. H. Qi, B. Yi, S. Suresh, M. Lambeta, Y. Ma, R. Calandra, and J. Malik, “General in-hand object rotation with vision and touch,” in Conference on Robot Learning.   PMLR, 2023, pp. 2549–2564.
  53. G. Khandate, S. Shang, E. T. Chang, T. L. Saidi, J. Adams, and M. Ciocarlie, “Sampling-based exploration for reinforcement learning of dexterous manipulation,” in Robotics: Science and Systems (RSS), 2023.
  54. Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang, “Rotating without seeing: Towards in-hand dexterity through touch,” in Robotics: Science and Systems (RSS), 2023.
  55. L. Sievers, J. Pitz, and B. Bäuml, “Learning purely tactile in-hand manipulation with a torque-controlled hand,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 2745–2751.
  56. Y. Yuan, H. Che, Y. Qin, B. Huang, Z.-H. Yin, K.-W. Lee, Y. Wu, S.-C. Lim, and X. Wang, “Robot synesthesia: In-hand manipulation with visuotactile sensing,” arXiv preprint arXiv:2312.01853, 2023.
  57. M. Van der Merwe, Y. Wi, D. Berenson, and N. Fazeli, “Integrated object deformation and contact patch estimation from visuo-tactile feedback,” arXiv preprint arXiv:2305.14470, 2023.
  58. N. Doshi, O. Taylor, and A. Rodriguez, “Manipulation of unknown objects via contact configuration regulation,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 2693–2699.
  59. C. Higuera, J. Ortiz, H. Qi, L. Pineda, B. Boots, and M. Mukadam, “Perceiving extrinsic contacts from touch improves learning insertion policies,” arXiv preprint arXiv:2309.16652, 2023.
  60. L. Kim, Y. Li, M. Posa, and D. Jayaraman, “Im2contact: Vision-based contact localization without touch or force sensing,” in Conference on Robot Learning.   PMLR, 2023, pp. 1533–1546.
  61. G. Zhou, N. Kumar, A. Dedieu, M. Lázaro-Gredilla, S. Kushagra, and D. George, “Pgmax: Factor graphs for discrete probabilistic graphical models and loopy belief propagation in jax,” arXiv preprint arXiv:2202.04110, 2022.
  62. G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268–278, 1973.
  63. M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “isam2: Incremental smoothing and mapping using the bayes tree,” The International Journal of Robotics Research, vol. 31, no. 2, pp. 216–235, 2012.
  64. F. Dellaert, “Factor graphs and gtsam: A hands-on introduction,” Georgia Institute of Technology, Tech. Rep, vol. 2, p. 4, 2012.
  65. F. Dellaert, M. Kaess et al., “Factor graphs for robot perception,” Foundations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017.
  66. S. Goyal, “Planar sliding of a rigid body with dry friction: limit surfaces and dynamics of motion,” Ph.D. dissertation, Cornell University Ithaca, NY, 1989.
  67. T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana, “Deep reinforcement learning for high precision assembly tasks,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 819–825.
  68. T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz, S. Schaal, and S. Levine, “Offline meta-reinforcement learning for industrial insertion,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 6386–6393.
Citations (4)

Summary

We haven't generated a summary for this paper yet.