Retrieval-Augmented Generation for AI-Generated Content: A Survey (2402.19473v6)
Abstract: Advancements in model algorithms, the growth of foundational models, and access to high-quality datasets have propelled the evolution of Artificial Intelligence Generated Content (AIGC). Despite its notable successes, AIGC still faces hurdles such as updating knowledge, handling long-tail data, mitigating data leakage, and managing high training and inference costs. Retrieval-Augmented Generation (RAG) has recently emerged as a paradigm to address such challenges. In particular, RAG introduces the information retrieval process, which enhances the generation process by retrieving relevant objects from available data stores, leading to higher accuracy and better robustness. In this paper, we comprehensively review existing efforts that integrate RAG technique into AIGC scenarios. We first classify RAG foundations according to how the retriever augments the generator, distilling the fundamental abstractions of the augmentation methodologies for various retrievers and generators. This unified perspective encompasses all RAG scenarios, illuminating advancements and pivotal technologies that help with potential future progress. We also summarize additional enhancements methods for RAG, facilitating effective engineering and implementation of RAG systems. Then from another view, we survey on practical applications of RAG across different modalities and tasks, offering valuable references for researchers and practitioners. Furthermore, we introduce the benchmarks for RAG, discuss the limitations of current RAG systems, and suggest potential directions for future research. Github: https://github.com/PKU-DAIR/RAG-Survey.
- T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
- M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating large language models trained on code,” CoRR, vol. abs/2107.03374, 2021. [Online]. Available: https://arxiv.org/abs/2107.03374
- OpenAI, “GPT-4 technical report,” CoRR, vol. abs/2303.08774, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2303.08774
- H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient foundation language models,” CoRR, vol. abs/2302.13971, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.13971
- H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton-Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,” CoRR, vol. abs/2307.09288, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.09288
- B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt, C. Canton-Ferrer, A. Grattafiori, W. Xiong, A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and G. Synnaeve, “Code llama: Open foundation models for code,” CoRR, vol. abs/2308.12950, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2308.12950
- A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever, “Zero-shot text-to-image generation,” in Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR, 2021, pp. 8821–8831. [Online]. Available: http://proceedings.mlr.press/v139/ramesh21a.html
- A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with CLIP latents,” CoRR, vol. abs/2204.06125, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2204.06125
- J. Betker, G. Goh, L. Jing, T. Brooks, J. Wang, L. Li, L. Ouyang, J. Zhuang, J. Lee, Y. Guo et al., “Improving image generation with better captions,” Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf, vol. 2, no. 3, p. 8, 2023.
- R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. IEEE, 2022, pp. 10 674–10 685. [Online]. Available: https://doi.org/10.1109/CVPR52688.2022.01042
- OpenAI, “Video generation models as world simulators,” https://openai.com/research/video-generation-models-as-world-simulators, 2024.
- S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available: https://doi.org/10.1162/neco.1997.9.8.1735
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 5998–6008. [Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
- I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144, 2020. [Online]. Available: https://doi.org/10.1145/3422622
- J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds. Association for Computational Linguistics, 2019, pp. 4171–4186. [Online]. Available: https://doi.org/10.18653/v1/n19-1423
- C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21, pp. 140:1–140:67, 2020. [Online]. Available: http://jmlr.org/papers/v21/20-074.html
- J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,” CoRR, vol. abs/2001.08361, 2020. [Online]. Available: https://arxiv.org/abs/2001.08361
- S. E. Robertson and H. Zaragoza, “The probabilistic relevance framework: BM25 and beyond,” Found. Trends Inf. Retr., vol. 3, no. 4, pp. 333–389, 2009. [Online]. Available: https://doi.org/10.1561/1500000019
- V. Karpukhin, B. Oguz, S. Min, P. S. H. Lewis, L. Wu, S. Edunov, D. Chen, and W. Yih, “Dense passage retrieval for open-domain question answering,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, B. Webber, T. Cohn, Y. He, and Y. Liu, Eds. Association for Computational Linguistics, 2020, pp. 6769–6781. [Online]. Available: https://doi.org/10.18653/v1/2020.emnlp-main.550
- J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus,” IEEE Trans. Big Data, vol. 7, no. 3, pp. 535–547, 2021. [Online]. Available: https://doi.org/10.1109/TBDATA.2019.2921572
- Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li, M. Yang, and J. Wang, “SPANN: highly-efficient billion-scale approximate nearest neighborhood search,” in Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021, pp. 5199–5212. [Online]. Available: https://proceedings.neurips.cc/paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html
- R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval: Ideas, influences, and trends of the new age,” ACM Comput. Surv., vol. 40, no. 2, pp. 5:1–5:60, 2008. [Online]. Available: https://doi.org/10.1145/1348246.1348248
- A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning. PMLR, 2021, pp. 8748–8763.
- Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for programming and natural languages,” in Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November 2020, ser. Findings of ACL, T. Cohn, Y. He, and Y. Liu, Eds., vol. EMNLP 2020. Association for Computational Linguistics, 2020, pp. 1536–1547. [Online]. Available: https://doi.org/10.18653/v1/2020.findings-emnlp.139
- Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick, and S. Dubnov, “Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption augmentation,” in IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2023, Rhodes Island, Greece, June 4-10, 2023. IEEE, 2023, pp. 1–5. [Online]. Available: https://doi.org/10.1109/ICASSP49357.2023.10095969
- A. Mallen, A. Asai, V. Zhong, R. Das, D. Khashabi, and H. Hajishirzi, “When not to trust language models: Investigating effectiveness of parametric and non-parametric memories,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds. Association for Computational Linguistics, 2023, pp. 9802–9822. [Online]. Available: https://doi.org/10.18653/v1/2023.acl-long.546
- N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. B. Brown, D. Song, Ú. Erlingsson, A. Oprea, and C. Raffel, “Extracting training data from large language models,” in 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, M. D. Bailey and R. Greenstadt, Eds. USENIX Association, 2021, pp. 2633–2650. [Online]. Available: https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
- G. Izacard, P. S. H. Lewis, M. Lomeli, L. Hosseini, F. Petroni, T. Schick, J. Dwivedi-Yu, A. Joulin, S. Riedel, and E. Grave, “Atlas: Few-shot learning with retrieval augmented language models,” J. Mach. Learn. Res., vol. 24, pp. 251:1–251:43, 2023. [Online]. Available: http://jmlr.org/papers/v24/23-0037.html
- Y. Wu, M. N. Rabe, D. Hutchins, and C. Szegedy, “Memorizing transformers,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=TrjbxzRcnf-
- Z. He, Z. Zhong, T. Cai, J. D. Lee, and D. He, “REST: retrieval-based speculative decoding,” CoRR, vol. abs/2311.08252, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2311.08252
- K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang, “REALM: retrieval-augmented language model pre-training,” CoRR, vol. abs/2002.08909, 2020. [Online]. Available: https://arxiv.org/abs/2002.08909
- P. S. H. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel, and D. Kiela, “Retrieval-augmented generation for knowledge-intensive NLP tasks,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
- G. Izacard and E. Grave, “Leveraging passage retrieval with generative models for open domain question answering,” in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, P. Merlo, J. Tiedemann, and R. Tsarfaty, Eds. Association for Computational Linguistics, 2021, pp. 874–880. [Online]. Available: https://doi.org/10.18653/v1/2021.eacl-main.74
- S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. van den Driessche, J. Lespiau, B. Damoc, A. Clark, D. de Las Casas, A. Guy, J. Menick, R. Ring, T. Hennigan, S. Huang, L. Maggiore, C. Jones, A. Cassirer, A. Brock, M. Paganini, G. Irving, O. Vinyals, S. Osindero, K. Simonyan, J. W. Rae, E. Elsen, and L. Sifre, “Improving language models by retrieving from trillions of tokens,” in International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, ser. Proceedings of Machine Learning Research, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato, Eds., vol. 162. PMLR, 2022, pp. 2206–2240. [Online]. Available: https://proceedings.mlr.press/v162/borgeaud22a.html
- U. Khandelwal, O. Levy, D. Jurafsky, L. Zettlemoyer, and M. Lewis, “Generalization through memorization: Nearest neighbor language models,” in 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. [Online]. Available: https://openreview.net/forum?id=HklBjCEKvH
- J. He, G. Neubig, and T. Berg-Kirkpatrick, “Efficient nearest neighbor language models,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds. Association for Computational Linguistics, 2021, pp. 5703–5714. [Online]. Available: https://doi.org/10.18653/v1/2021.emnlp-main.461
- zilliztech. (2023) Gptcache. [Online]. Available: https://github.com/zilliztech/GPTCache
- M. R. Parvez, W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “Retrieval augmented code generation and summarization,” in Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds. Association for Computational Linguistics, 2021, pp. 2719–2734. [Online]. Available: https://doi.org/10.18653/v1/2021.findings-emnlp.232
- W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “Unified pre-training for program understanding and generation,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tür, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds. Association for Computational Linguistics, 2021, pp. 2655–2668. [Online]. Available: https://doi.org/10.18653/v1/2021.naacl-main.211
- S. Zhou, U. Alon, F. F. Xu, Z. Jiang, and G. Neubig, “Docprompting: Generating code by retrieving the docs,” in The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?id=ZTCxT2t2Ru
- Y. Koizumi, Y. Ohishi, D. Niizumi, D. Takeuchi, and M. Yasuda, “Audio captioning using pre-trained large-scale language model guided by audio-based similar caption retrieval,” CoRR, vol. abs/2012.07331, 2020. [Online]. Available: https://arxiv.org/abs/2012.07331
- R. Huang, J. Huang, D. Yang, Y. Ren, L. Liu, M. Li, Z. Ye, J. Liu, X. Yin, and Z. Zhao, “Make-an-audio: Text-to-audio generation with prompt-enhanced diffusion models,” in International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, ser. Proceedings of Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202. PMLR, 2023, pp. 13 916–13 932. [Online]. Available: https://proceedings.mlr.press/v202/huang23i.html
- H.-Y. Tseng, H.-Y. Lee, L. Jiang, M.-H. Yang, and W. Yang, “Retrievegan: Image synthesis via differentiable patch retrieval,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16. Springer, 2020, pp. 242–257.
- S. Sarto, M. Cornia, L. Baraldi, and R. Cucchiara, “Retrieval-augmented transformer for image captioning,” in Proceedings of the 19th International Conference on Content-based Multimedia Indexing, 2022, pp. 1–7.
- R. Ramos, B. Martins, D. Elliott, and Y. Kementchedjhieva, “Smallcap: lightweight image captioning prompted with retrieval augmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 2840–2849.
- J. Chen, Y. Pan, Y. Li, T. Yao, H. Chao, and T. Mei, “Retrieval augmented convolutional encoder-decoder networks for video captioning,” ACM Trans. Multim. Comput. Commun. Appl., vol. 19, no. 1s, pp. 48:1–48:24, 2023. [Online]. Available: https://doi.org/10.1145/3539225
- J. Xu, Y. Huang, J. Hou, G. Chen, Y. Zhang, R. Feng, and W. Xie, “Retrieval-augmented egocentric video captioning,” CoRR, vol. abs/2401.00789, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.00789
- J. Seo, S. Hong, W. Jang, I. H. Kim, M. Kwak, D. Lee, and S. Kim, “Retrieval-augmented score distillation for text-to-3d generation,” CoRR, vol. abs/2402.02972, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2402.02972
- M. Zhang, X. Guo, L. Pan, Z. Cai, F. Hong, H. Li, L. Yang, and Z. Liu, “Remodiffuse: Retrieval-augmented motion diffusion model,” in IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023. IEEE, 2023, pp. 364–373. [Online]. Available: https://doi.org/10.1109/ICCV51070.2023.00040
- X. Hu, X. Wu, Y. Shu, and Y. Qu, “Logical form generation via multi-task learning for complex question answering over knowledge bases,” in Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022, N. Calzolari, C. Huang, H. Kim, J. Pustejovsky, L. Wanner, K. Choi, P. Ryu, H. Chen, L. Donatelli, H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee, E. Santus, F. Bond, and S. Na, Eds. International Committee on Computational Linguistics, 2022, pp. 1687–1696. [Online]. Available: https://aclanthology.org/2022.coling-1.145
- X. Huang, J. Kim, and B. Zou, “Unseen entity handling in complex question answering over knowledge base via language generation,” in Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds. Association for Computational Linguistics, 2021, pp. 547–557. [Online]. Available: https://doi.org/10.18653/v1/2021.findings-emnlp.50
- R. Das, M. Zaheer, D. Thai, A. Godbole, E. Perez, J. Y. Lee, L. Tan, L. Polymenakos, and A. McCallum, “Case-based reasoning for natural language queries over knowledge bases,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds. Association for Computational Linguistics, 2021, pp. 9594–9611. [Online]. Available: https://doi.org/10.18653/v1/2021.emnlp-main.755
- Z. Wang, W. Nie, Z. Qiao, C. Xiao, R. Baraniuk, and A. Anandkumar, “Retrieval-based controllable molecule generation,” in The Eleventh International Conference on Learning Representations, 2022.
- Q. Jin, Y. Yang, Q. Chen, and Z. Lu, “Genegpt: Augmenting large language models with domain tools for improved access to biomedical information,” ArXiv, 2023.
- H. Li, Y. Su, D. Cai, Y. Wang, and L. Liu, “A survey on retrieval-augmented text generation,” CoRR, vol. abs/2202.01110, 2022. [Online]. Available: https://arxiv.org/abs/2202.01110
- A. Asai, S. Min, Z. Zhong, and D. Chen, “Acl 2023 tutorial: Retrieval-based language models and applications,” ACL 2023, 2023.
- Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, Q. Guo, M. Wang, and H. Wang, “Retrieval-augmented generation for large language models: A survey,” CoRR, vol. abs/2312.10997, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2312.10997
- R. Zhao, H. Chen, W. Wang, F. Jiao, D. X. Long, C. Qin, B. Ding, X. Guo, M. Li, X. Li, and S. Joty, “Retrieving multimodal information for augmented generation: A survey,” in Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds. Association for Computational Linguistics, 2023, pp. 4736–4756. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.314
- J. Chen, H. Guo, K. Yi, B. Li, and M. Elhoseiny, “Visualgpt: Data-efficient adaptation of pretrained language models for image captioning,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. IEEE, 2022, pp. 18 009–18 019. [Online]. Available: https://doi.org/10.1109/CVPR52688.2022.01750
- Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers: A survey,” ACM Comput. Surv., vol. 55, no. 6, pp. 109:1–109:28, 2023. [Online]. Available: https://doi.org/10.1145/3530811
- G. V. Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-term memory model,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5929–5955, 2020. [Online]. Available: https://doi.org/10.1007/s10462-020-09838-1
- L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods and applications,” ACM Computing Surveys, vol. 56, no. 4, pp. 1–39, 2023.
- J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in International conference on machine learning. PMLR, 2015, pp. 2256–2265.
- J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
- A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in International Conference on Machine Learning. PMLR, 2021, pp. 8162–8171.
- Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” Advances in neural information processing systems, vol. 32, 2019.
- Song, Yang and Ermon, Stefano, “Improved techniques for training score-based generative models,” Advances in neural information processing systems, vol. 33, pp. 12 438–12 448, 2020.
- Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456, 2020.
- Y. Song, C. Durkan, I. Murray, and S. Ermon, “Maximum likelihood training of score-based diffusion models,” Advances in Neural Information Processing Systems, vol. 34, pp. 1415–1428, 2021.
- L. Yang, H. Qian, Z. Zhang, J. Liu, and B. Cui, “Structure-guided adversarial training of diffusion models,” arXiv preprint arXiv:2402.17563, 2024.
- X. Zhang, L. Yang, Y. Cai, Z. Yu, J. Xie, Y. Tian, M. Xu, Y. Tang, Y. Yang, and B. Cui, “Realcompo: Dynamic equilibrium between realism and compositionality improves text-to-image diffusion models,” arXiv preprint arXiv:2402.12908, 2024.
- R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” 2021.
- A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with clip latents,” arXiv preprint arXiv:2204.06125, vol. 1, no. 2, p. 3, 2022.
- H. Li, Y. Yang, M. Chang, S. Chen, H. Feng, Z. Xu, Q. Li, and Y. Chen, “Srdiff: Single image super-resolution with diffusion probabilistic models,” Neurocomputing, vol. 479, pp. 47–59, 2022.
- J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, “Cascaded diffusion models for high fidelity image generation,” The Journal of Machine Learning Research, vol. 23, no. 1, pp. 2249–2281, 2022.
- L. Yang, J. Liu, S. Hong, Z. Zhang, Z. Huang, Z. Cai, W. Zhang, and B. Cui, “Improving diffusion-based image synthesis with context prediction,” Advances in Neural Information Processing Systems, vol. 36, 2024.
- L. Yang, Z. Yu, C. Meng, M. Xu, S. Ermon, and B. Cui, “Mastering text-to-image diffusion: Recaptioning, planning, and generating with multimodal llms,” arXiv preprint arXiv:2401.11708, 2024.
- S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong, “Diffuseq: Sequence to sequence text generation with diffusion models,” arXiv preprint arXiv:2210.08933, 2022.
- X. Li, J. Thickstun, I. Gulrajani, P. S. Liang, and T. B. Hashimoto, “Diffusion-lm improves controllable text generation,” Advances in Neural Information Processing Systems, vol. 35, pp. 4328–4343, 2022.
- J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg, “Structured denoising diffusion models in discrete state-spaces,” Advances in Neural Information Processing Systems, vol. 34, pp. 17 981–17 993, 2021.
- T. Chen, R. Zhang, and G. Hinton, “Analog bits: Generating discrete data using diffusion models with self-conditioning,” arXiv preprint arXiv:2208.04202, 2022.
- J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi, D. J. Fleet et al., “Imagen video: High definition video generation with diffusion models,” arXiv preprint arXiv:2210.02303, 2022.
- W. Harvey, S. Naderiparizi, V. Masrani, C. Weilbach, and F. Wood, “Flexible diffusion modeling of long videos,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 953–27 965, 2022.
- R. Yang, P. Srivastava, and S. Mandt, “Diffusion probabilistic modeling for video generation,” Entropy, vol. 25, no. 10, p. 1469, 2023.
- M. Zhang, Z. Cai, L. Pan, F. Hong, X. Guo, L. Yang, and Z. Liu, “Motiondiffuse: Text-driven human motion generation with diffusion model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
- L. Yang, Z. Zhang, Z. Yu, J. Liu, M. Xu, S. Ermon, and B. CUI, “Cross-modal contextualized diffusion models for text-guided visual generation and editing,” in International Conference on Learning Representations, 2024.
- N. Anand and T. Achim, “Protein structure and sequence generation with equivariant denoising diffusion probabilistic models,” arXiv preprint arXiv:2205.15019, 2022.
- M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang, “Geodiff: A geometric diffusion model for molecular conformation generation,” arXiv preprint arXiv:2203.02923, 2022.
- E. Hoogeboom, V. G. Satorras, C. Vignac, and M. Welling, “Equivariant diffusion for molecule generation in 3d,” in International conference on machine learning. PMLR, 2022, pp. 8867–8887.
- B. Jing, G. Corso, J. Chang, R. Barzilay, and T. Jaakkola, “Torsional diffusion for molecular conformer generation,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 240–24 253, 2022.
- Z. Huang, L. Yang, X. Zhou, Z. Zhang, W. Zhang, X. Zheng, J. Chen, Y. Wang, B. CUI, and W. Yang, “Protein-ligand interaction prior for binding-aware 3d molecule diffusion models,” in International Conference on Learning Representations, 2024.
- J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv preprint arXiv:2010.02502, 2020.
- X. Liu, C. Gong, and Q. Liu, “Flow straight and fast: Learning to generate and transfer data with rectified flow,” arXiv preprint arXiv:2209.03003, 2022.
- Y. Song, P. Dhariwal, M. Chen, and I. Sutskever, “Consistency models,” arXiv preprint arXiv:2303.01469, 2023.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
- J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative adversarial networks: Algorithms, theory, and applications,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3313–3332, 2023. [Online]. Available: https://doi.org/10.1109/TKDE.2021.3130191
- S. E. Robertson and S. Walker, “On relevance weights with little relevance information,” in SIGIR ’97: Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, July 27-31, 1997, Philadelphia, PA, USA, N. J. Belkin, A. D. Narasimhalu, P. Willett, W. R. Hersh, F. Can, and E. M. Voorhees, Eds. ACM, 1997, pp. 16–24. [Online]. Available: https://doi.org/10.1145/258525.258529
- J. D. Lafferty and C. Zhai, “Document language models, query models, and risk minimization for information retrieval,” in SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA, W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, Eds. ACM, 2001, pp. 111–119. [Online]. Available: https://doi.org/10.1145/383952.383970
- Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT pretraining approach,” CoRR, vol. abs/1907.11692, 2019. [Online]. Available: http://arxiv.org/abs/1907.11692
- L. Xiong, C. Xiong, Y. Li, K. Tang, J. Liu, P. N. Bennett, J. Ahmed, and A. Overwijk, “Approximate nearest neighbor negative contrastive learning for dense text retrieval,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. [Online]. Available: https://openreview.net/forum?id=zeFrfgyZln
- H. Zhang, Y. Gong, Y. Shen, J. Lv, N. Duan, and W. Chen, “Adversarial retriever-ranker for dense text retrieval,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=MR7XubKUFB
- Y. Qu, Y. Ding, J. Liu, K. Liu, R. Ren, W. X. Zhao, D. Dong, H. Wu, and H. Wang, “Rocketqa: An optimized training approach to dense passage retrieval for open-domain question answering,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tür, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds. Association for Computational Linguistics, 2021, pp. 5835–5847. [Online]. Available: https://doi.org/10.18653/v1/2021.naacl-main.466
- L. Gao and J. Callan, “Condenser: a pre-training architecture for dense retrieval,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds. Association for Computational Linguistics, 2021, pp. 981–993. [Online]. Available: https://doi.org/10.18653/v1/2021.emnlp-main.75
- D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert: Pre-training code representations with data flow,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. [Online]. Available: https://openreview.net/forum?id=jLoC4ez43PZ
- Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds. Association for Computational Linguistics, 2021, pp. 8696–8708. [Online]. Available: https://doi.org/10.18653/v1/2021.emnlp-main.685
- S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. J. Weiss, and K. W. Wilson, “CNN architectures for large-scale audio classification,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017. IEEE, 2017, pp. 131–135. [Online]. Available: https://doi.org/10.1109/ICASSP.2017.7952132
- X. Yuan, Z. Lin, J. Kuen, J. Zhang, Y. Wang, M. Maire, A. Kale, and B. Faieta, “Multimodal contrastive training for visual representation learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 6995–7004.
- J. Dong, X. Li, C. Xu, S. Ji, Y. He, G. Yang, and X. Wang, “Dual encoding for zero-example video retrieval,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 2019, pp. 9346–9355. [Online]. Available: http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Dual_Encoding_for_Zero-Example_Video_Retrieval_CVPR_2019_paper.html
- M. Bain, A. Nagrani, G. Varol, and A. Zisserman, “Frozen in time: A joint video and image encoder for end-to-end retrieval,” in 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021. IEEE, 2021, pp. 1708–1718. [Online]. Available: https://doi.org/10.1109/ICCV48922.2021.00175
- J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma, “Optimizing dense retrieval model training with hard negatives,” in Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021, pp. 1503–1512.
- J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.
- W. Li, C. Feng, D. Lian, Y. Xie, H. Liu, Y. Ge, and E. Chen, “Learning balanced tree indexes for large-scale vector retrieval,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 1353–1362.
- M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive hashing scheme based on p-stable distributions,” in Proceedings of the twentieth annual symposium on Computational geometry, 2004, pp. 253–262.
- Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 4, pp. 824–836, 2018.
- S. Jayaram Subramanya, F. Devvrit, H. V. Simhadri, R. Krishnawamy, and R. Kadekodi, “Diskann: Fast accurate billion-point nearest neighbor search on a single node,” Advances in Neural Information Processing Systems, vol. 32, 2019.
- J. Ren, M. Zhang, and D. Li, “Hm-ann: Efficient billion-point nearest neighbor search on heterogeneous memory,” Advances in Neural Information Processing Systems, vol. 33, pp. 10 672–10 684, 2020.
- Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li, M. Yang, and J. Wang, “Spann: Highly-efficient billion-scale approximate nearest neighborhood search,” Advances in Neural Information Processing Systems, vol. 34, pp. 5199–5212, 2021.
- S. A. Hayati, R. Olivier, P. Avvaru, P. Yin, A. Tomasic, and G. Neubig, “Retrieval-based neural code generation,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, Eds. Association for Computational Linguistics, 2018, pp. 925–930. [Online]. Available: https://doi.org/10.18653/v1/d18-1111
- J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based neural source code summarization,” in ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel and D. Bae, Eds. ACM, 2020, pp. 1385–1397. [Online]. Available: https://doi.org/10.1145/3377811.3380383
- G. Poesia, A. Polozov, V. Le, A. Tiwari, G. Soares, C. Meek, and S. Gulwani, “Synchromesh: Reliable code generation from pre-trained language models,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=KmtVD97J43e
- X. Ye, S. Yavuz, K. Hashimoto, Y. Zhou, and C. Xiong, “RNG-KBQA: generation augmented iterative ranking for knowledge base question answering,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds. Association for Computational Linguistics, 2022, pp. 6032–6043. [Online]. Available: https://doi.org/10.18653/v1/2022.acl-long.417
- Y. Shu, Z. Yu, Y. Li, B. F. Karlsson, T. Ma, Y. Qu, and C. Lin, “TIARA: multi-grained retrieval for robust question answering over large knowledge bases,” CoRR, vol. abs/2210.12925, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2210.12925
- M. Xu, H. Jiang, and S. Watcharawittayakul, “A local detection approach for named entity recognition and mention detection,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017, pp. 1237–1247.
- X. V. Lin, R. Socher, and C. Xiong, “Bridging textual and tabular data for cross-domain text-to-sql semantic parsing,” arXiv preprint arXiv:2012.12627, 2020.
- F. Petroni, A. Piktus, A. Fan, P. Lewis, M. Yazdani, N. De Cao, J. Thorne, Y. Jernite, V. Karpukhin, J. Maillard et al., “Kilt: a benchmark for knowledge intensive language tasks,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021, pp. 2523–2544.
- A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi, “Self-rag: Learning to retrieve, generate, and critique through self-reflection,” CoRR, vol. abs/2310.11511, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.11511
- W. Shi, S. Min, M. Yasunaga, M. Seo, R. James, M. Lewis, L. Zettlemoyer, and W.-t. Yih, “Replug: Retrieval-augmented black-box language models,” arXiv preprint arXiv:2301.12652, 2023.
- O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-Brown, and Y. Shoham, “In-context retrieval-augmented language models,” arXiv preprint arXiv:2302.00083, 2023.
- D. Zan, B. Chen, Z. Lin, B. Guan, Y. Wang, and J. Lou, “When language model meets private library,” in Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds. Association for Computational Linguistics, 2022, pp. 277–288. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-emnlp.21
- N. Nashid, M. Sintaha, and A. Mesbah, “Retrieval-based prompt selection for code-related few-shot learning,” in 45th IEEE/ACM International Conference on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 2023, pp. 2450–2462. [Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00205
- M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, and A. Svyatkovskiy, “Inferfix: End-to-end program repair with llms,” in Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023, S. Chandra, K. Blincoe, and P. Tonella, Eds. ACM, 2023, pp. 1646–1656. [Online]. Available: https://doi.org/10.1145/3611643.3613892
- S. Lu, N. Duan, H. Han, D. Guo, S. Hwang, and A. Svyatkovskiy, “Reacc: A retrieval-augmented code completion framework,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds. Association for Computational Linguistics, 2022, pp. 6227–6240. [Online]. Available: https://doi.org/10.18653/v1/2022.acl-long.431
- Y. Liu, S. Yavuz, R. Meng, D. Radev, C. Xiong, and Y. Zhou, “Uni-parser: Unified semantic parser for question answering on knowledge base and database,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds. Association for Computational Linguistics, 2022, pp. 8858–8869. [Online]. Available: https://doi.org/10.18653/v1/2022.emnlp-main.605
- Z. Yang, X. Du, E. Cambria, and C. Cardie, “End-to-end case-based reasoning for commonsense knowledge base completion,” in Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023, Dubrovnik, Croatia, May 2-6, 2023, A. Vlachos and I. Augenstein, Eds. Association for Computational Linguistics, 2023, pp. 3491–3504. [Online]. Available: https://doi.org/10.18653/v1/2023.eacl-main.255
- M. Patidar, A. K. Singh, R. Sawhney, I. Bhattacharya, and Mausam, “Combining transfer learning with in-context learning using blackbox llms for zero-shot knowledge base question answering,” CoRR, vol. abs/2311.08894, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2311.08894
- W. Shi, Y. Zhuang, Y. Zhu, H. Iwinski, M. Wattenbarger, and M. D. Wang, “Retrieval-augmented large language models for adolescent idiopathic scoliosis patients in shared decision-making,” in Proceedings of the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, 2023, pp. 1–10.
- A. Casanova, M. Careil, J. Verbeek, M. Drozdzal, and A. Romero Soriano, “Instance-conditioned gan,” Advances in Neural Information Processing Systems, vol. 34, pp. 27 517–27 529, 2021.
- J. Li, Y. Li, G. Li, X. Hu, X. Xia, and Z. Jin, “Editsum: A retrieve-and-edit framework for source code summarization,” in 36th IEEE/ACM International Conference on Automated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021. IEEE, 2021, pp. 155–166. [Online]. Available: https://doi.org/10.1109/ASE51524.2021.9678724
- C. Yu, G. Yang, X. Chen, K. Liu, and Y. Zhou, “Bashexplainer: Retrieval-augmented bash code comment generation based on fine-tuned codebert,” in IEEE International Conference on Software Maintenance and Evolution, ICSME 2022, Limassol, Cyprus, October 3-7, 2022. IEEE, 2022, pp. 82–93. [Online]. Available: https://doi.org/10.1109/ICSME55016.2022.00016
- T. B. Hashimoto, K. Guu, Y. Oren, and P. Liang, “A retrieve-and-edit framework for predicting structured outputs,” in Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp. 10 073–10 083. [Online]. Available: https://proceedings.neurips.cc/paper/2018/hash/cd17d3ce3b64f227987cd92cd701cc58-Abstract.html
- E. Shi, Y. Wang, W. Tao, L. Du, H. Zhang, S. Han, D. Zhang, and H. Sun, “RACE: retrieval-augmented commit message generation,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds. Association for Computational Linguistics, 2022, pp. 5520–5530. [Online]. Available: https://doi.org/10.18653/v1/2022.emnlp-main.372
- B. Oguz, X. Chen, V. Karpukhin, S. Peshterliev, D. Okhonko, M. S. Schlichtkrull, S. Gupta, Y. Mehdad, and S. Yih, “Unik-qa: Unified representations of structured and unstructured knowledge for open-domain question answering,” in Findings of the Association for Computational Linguistics: NAACL 2022, Seattle, WA, United States, July 10-15, 2022, M. Carpuat, M. de Marneffe, and I. V. M. Ruíz, Eds. Association for Computational Linguistics, 2022, pp. 1535–1546. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-naacl.115
- D. Yu, S. Zhang, P. Ng, H. Zhu, A. H. Li, J. Wang, Y. Hu, W. Y. Wang, Z. Wang, and B. Xiang, “Decaf: Joint decoding of answers and logical forms for question answering over knowledge bases,” in The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?id=XHc5zRPxqV9
- G. Dong, R. Li, S. Wang, Y. Zhang, Y. Xian, and W. Xu, “Bridging the kb-text gap: Leveraging structured knowledge-aware pre-training for KBQA,” in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, Birmingham, United Kingdom, October 21-25, 2023, I. Frommholz, F. Hopfgartner, M. Lee, M. Oakes, M. Lalmas, M. Zhang, and R. L. T. Santos, Eds. ACM, 2023, pp. 3854–3859. [Online]. Available: https://doi.org/10.1145/3583780.3615150
- K. Wang, F. Duan, S. Wang, P. Li, Y. Xian, C. Yin, W. Rong, and Z. Xiong, “Knowledge-driven cot: Exploring faithful reasoning in llms for knowledge-intensive question answering,” CoRR, vol. abs/2308.13259, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2308.13259
- D. Yu and Y. Yang, “Retrieval-enhanced generative model for large-scale knowledge graph completion,” in Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023, Taipei, Taiwan, July 23-27, 2023, H. Chen, W. E. Duh, H. Huang, M. P. Kato, J. Mothe, and B. Poblete, Eds. ACM, 2023, pp. 2334–2338. [Online]. Available: https://doi.org/10.1145/3539618.3592052
- W. Zhung, H. Kim, and W. Y. Kim, “A protein-ligand interaction-focused 3d molecular generative framework for generalizable structure-based drug design,” 2023.
- W. Chen, H. Hu, C. Saharia, and W. W. Cohen, “Re-imagen: Retrieval-augmented text-to-image generator,” arXiv preprint arXiv:2209.14491, 2022.
- S. Sheynin, O. Ashual, A. Polyak, U. Singer, O. Gafni, E. Nachmani, and Y. Taigman, “Knn-diffusion: Image generation via large-scale retrieval,” arXiv preprint arXiv:2204.02849, 2022.
- A. Blattmann, R. Rombach, K. Oktay, J. Müller, and B. Ommer, “Retrieval-augmented diffusion models,” Advances in Neural Information Processing Systems, vol. 35, pp. 15 309–15 324, 2022.
- R. Rombach, A. Blattmann, and B. Ommer, “Text-guided synthesis of artistic images with retrieval-augmented diffusion models,” arXiv preprint arXiv:2207.13038, 2022.
- B. Li, P. H. Torr, and T. Lukasiewicz, “Memory-driven text-to-image generation,” arXiv preprint arXiv:2208.07022, 2022.
- M. de Jong, Y. Zemlyanskiy, N. FitzGerald, F. Sha, and W. W. Cohen, “Mention memory: incorporating textual knowledge into transformers through entity mention attention,” in International Conference on Learning Representations, 2021.
- A. Bertsch, U. Alon, G. Neubig, and M. R. Gormley, “Unlimiformer: Long-range transformers with unlimited length input,” CoRR, vol. abs/2305.01625, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2305.01625
- T. Févry, L. B. Soares, N. Fitzgerald, E. Choi, and T. Kwiatkowski, “Entities as experts: Sparse memory access with entity supervision,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 4937–4951.
- B. Jing, Y. Zhang, Z. Song, J. Yu, and W. Yang, “Amd: Anatomical motion diffusion with interpretable motion decomposition and fusion,” arXiv preprint arXiv:2312.12763, 2023.
- Y. Yuan, H. Liu, X. Liu, Q. Huang, M. D. Plumbley, and W. Wang, “Retrieval-augmented text-to-audio generation,” CoRR, vol. abs/2309.08051, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.08051
- B. Yang, M. Cao, and Y. Zou, “Concept-aware video captioning: Describing videos with effective prior information,” IEEE Trans. Image Process., vol. 32, pp. 5366–5378, 2023. [Online]. Available: https://doi.org/10.1109/TIP.2023.3307969
- Z. Zhong, T. Lei, and D. Chen, “Training language models with memory augmentation,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds. Association for Computational Linguistics, 2022, pp. 5657–5673. [Online]. Available: https://doi.org/10.18653/v1/2022.emnlp-main.382
- S. Min, W. Shi, M. Lewis, X. Chen, W. Yih, H. Hajishirzi, and L. Zettlemoyer, “Nonparametric masked language modeling,” in Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds. Association for Computational Linguistics, 2023, pp. 2097–2118. [Online]. Available: https://doi.org/10.18653/v1/2023.findings-acl.132
- X. Zhang, Y. Zhou, G. Yang, and T. Chen, “Syntax-aware retrieval augmented code generation,” in Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds. Association for Computational Linguistics, 2023, pp. 1291–1302. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.90
- Z. Fei, “Memory-augmented image captioning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 2, 2021, pp. 1317–1324.
- Y. Leviathan, M. Kalman, and Y. Matias, “Fast inference from transformers via speculative decoding,” in International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, ser. Proceedings of Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202. PMLR, 2023, pp. 19 274–19 286. [Online]. Available: https://proceedings.mlr.press/v202/leviathan23a.html
- L. Wang, N. Yang, and F. Wei, “Query2doc: Query expansion with large language models,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds. Association for Computational Linguistics, 2023, pp. 9414–9423. [Online]. Available: https://aclanthology.org/2023.emnlp-main.585
- L. Gao, X. Ma, J. Lin, and J. Callan, “Precise zero-shot dense retrieval without relevance labels,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds. Association for Computational Linguistics, 2023, pp. 1762–1777. [Online]. Available: https://doi.org/10.18653/v1/2023.acl-long.99
- R. Jagerman, H. Zhuang, Z. Qin, X. Wang, and M. Bendersky, “Query expansion by prompting large language models,” CoRR, vol. abs/2305.03653, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2305.03653
- J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi, Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in large language models,” in Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., 2022. [Online]. Available: http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
- K. Mao, Z. Dou, F. Mo, J. Hou, H. Chen, and H. Qian, “Large language models know your contextual search intent: A prompting framework for conversational search,” in Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds. Association for Computational Linguistics, 2023, pp. 1211–1225. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.86
- J. Liu, “LlamaIndex,” 11 2022. [Online]. Available: https://github.com/jerryjliu/llama_index
- S. Xiao, Z. Liu, P. Zhang, and N. Muennighoff, “C-pack: Packaged resources to advance general chinese embedding,” 2023.
- J. Chen, S. Xiao, P. Zhang, K. Luo, D. Lian, and Z. Liu, “Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation,” 2023.
- S. Xiao, Z. Liu, P. Zhang, and X. Xing, “Lm-cocktail: Resilient tuning of language models via model merging,” 2023.
- P. Zhang, S. Xiao, Z. Liu, Z. Dou, and J.-Y. Nie, “Retrieve anything to augment large language models,” 2023.
- W. Wang, Y. Wang, S. Joty, and S. C. H. Hoi, “Rap-gen: Retrieval-augmented patch generation with codet5 for automatic program repair,” in Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023, S. Chandra, K. Blincoe, and P. Tonella, Eds. ACM, 2023, pp. 146–158. [Online]. Available: https://doi.org/10.1145/3611643.3616256
- M. R. Glass, G. Rossiello, M. F. M. Chowdhury, A. Naik, P. Cai, and A. Gliozzo, “Re2g: Retrieve, rerank, generate,” in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United States, July 10-15, 2022, M. Carpuat, M. de Marneffe, and I. V. M. Ruíz, Eds. Association for Computational Linguistics, 2022, pp. 2701–2715. [Online]. Available: https://doi.org/10.18653/v1/2022.naacl-main.194
- R. F. Nogueira and K. Cho, “Passage re-ranking with BERT,” CoRR, vol. abs/1901.04085, 2019. [Online]. Available: http://arxiv.org/abs/1901.04085
- J. Li, Y. Zhao, Y. Li, G. Li, and Z. Jin, “Acecoder: Utilizing existing code to enhance code generation,” arXiv preprint arXiv:2303.17780, 2023.
- P. Shi, R. Zhang, H. Bai, and J. Lin, “XRICL: cross-lingual retrieval-augmented in-context learning for cross-lingual text-to-sql semantic parsing,” in Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds. Association for Computational Linguistics, 2022, pp. 5248–5259. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-emnlp.384
- https://www.pinecone.io.
- E. Saravia, “Prompt Engineering Guide,” https://github.com/dair-ai/Prompt-Engineering-Guide, 12 2022.
- H. S. Zheng, S. Mishra, X. Chen, H. Cheng, E. H. Chi, Q. V. Le, and D. Zhou, “Take a step back: Evoking reasoning via abstraction in large language models,” CoRR, vol. abs/2310.06117, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.06117
- S. Diao, P. Wang, Y. Lin, and T. Zhang, “Active prompting with chain-of-thought for large language models,” CoRR, vol. abs/2302.12246, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.12246
- H. Jiang, Q. Wu, C. Lin, Y. Yang, and L. Qiu, “Llmlingua: Compressing prompts for accelerated inference of large language models,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds. Association for Computational Linguistics, 2023, pp. 13 358–13 376. [Online]. Available: https://aclanthology.org/2023.emnlp-main.825
- N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang, “Lost in the middle: How language models use long contexts,” CoRR, vol. abs/2307.03172, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.03172
- T. Ahmed, K. S. Pai, P. Devanbu, and E. T. Barr, “Automatic semantic augmentation of language model prompts (for code summarization),” 2024.
- E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong, “A conversational paradigm for program synthesis,” CoRR, vol. abs/2203.13474, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2203.13474
- Y. He, M. Xia, H. Chen, X. Cun, Y. Gong, J. Xing, Y. Zhang, X. Wang, C. Weng, Y. Shan, and Q. Chen, “Animate-a-story: Storytelling with retrieval-augmented video generation,” CoRR, vol. abs/2307.06940, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.06940
- E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=nZeVKeeFYf9
- C. Liu, P. Çetin, Y. Patodia, S. Chakraborty, Y. Ding, and B. Ray, “Automated code editing with search-generate-modify,” CoRR, vol. abs/2306.06490, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2306.06490
- H. Joshi, J. P. C. Sánchez, S. Gulwani, V. Le, G. Verbruggen, and I. Radicek, “Repair is nearly generation: Multilingual program repair with llms,” in Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, B. Williams, Y. Chen, and J. Neville, Eds. AAAI Press, 2023, pp. 5131–5140. [Online]. Available: https://doi.org/10.1609/aaai.v37i4.25642
- Z. Jiang, F. F. Xu, L. Gao, Z. Sun, Q. Liu, J. Dwivedi-Yu, Y. Yang, J. Callan, and G. Neubig, “Active retrieval augmented generation,” arXiv preprint arXiv:2305.06983, 2023.
- Z. Jiang, J. Araki, H. Ding, and G. Neubig, “How can we know When language models know? on the calibration of language models for question answering,” Trans. Assoc. Comput. Linguistics, vol. 9, pp. 962–977, 2021. [Online]. Available: https://doi.org/10.1162/tacl_a_00407
- N. Kandpal, H. Deng, A. Roberts, E. Wallace, and C. Raffel, “Large language models struggle to learn long-tail knowledge,” in International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, ser. Proceedings of Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202. PMLR, 2023, pp. 15 696–15 707. [Online]. Available: https://proceedings.mlr.press/v202/kandpal23a.html
- R. Ren, Y. Wang, Y. Qu, W. X. Zhao, J. Liu, H. Tian, H. Wu, J. Wen, and H. Wang, “Investigating the factual knowledge boundary of large language models with retrieval augmentation,” CoRR, vol. abs/2307.11019, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.11019
- Y. Wang, P. Li, M. Sun, and Y. Liu, “Self-knowledge guided retrieval augmentation for large language models,” in Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds. Association for Computational Linguistics, 2023, pp. 10 303–10 315. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.691
- F. Zhang, B. Chen, Y. Zhang, J. Keung, J. Liu, D. Zan, Y. Mao, J. Lou, and W. Chen, “Repocoder: Repository-level code completion through iterative retrieval and generation,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds. Association for Computational Linguistics, 2023, pp. 2471–2484. [Online]. Available: https://aclanthology.org/2023.emnlp-main.151
- Z. Shao, Y. Gong, Y. Shen, M. Huang, N. Duan, and W. Chen, “Enhancing retrieval-augmented large language models with iterative retrieval-generation synergy,” in Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds. Association for Computational Linguistics, 2023, pp. 9248–9274. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.620
- O. Agarwal, H. Ge, S. Shakeri, and R. Al-Rfou, “Knowledge graph based synthetic corpus generation for knowledge-enhanced language model pre-training,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tür, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds. Association for Computational Linguistics, 2021, pp. 3554–3565. [Online]. Available: https://doi.org/10.18653/v1/2021.naacl-main.278
- J. Baek, A. F. Aji, and A. Saffari, “Knowledge-augmented language model prompting for zero-shot knowledge graph question answering,” CoRR, vol. abs/2306.04136, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2306.04136
- J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, H. Shum, and J. Guo, “Think-on-graph: Deep and responsible reasoning of large language model with knowledge graph,” CoRR, vol. abs/2307.07697, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.07697
- P. Limkonchotiwat, W. Ponwitayarat, C. Udomcharoenchaikit, E. Chuangsuwanich, and S. Nutanong, “Cl-relkt: Cross-lingual language knowledge transfer for multilingual retrieval question answering,” in Findings of the Association for Computational Linguistics: NAACL 2022, Seattle, WA, United States, July 10-15, 2022, M. Carpuat, M. de Marneffe, and I. V. M. Ruíz, Eds. Association for Computational Linguistics, 2022, pp. 2141–2155. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-naacl.165
- A. Asai, X. Yu, J. Kasai, and H. Hajishirzi, “One question answering model for many languages with cross-lingual dense passage retrieval,” in Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021, pp. 7547–7560. [Online]. Available: https://proceedings.neurips.cc/paper/2021/hash/3df07fdae1ab273a967aaa1d355b8bb6-Abstract.html
- K. Lee, S. Han, S. Hwang, and M. Lee, “When to read documents or QA history: On unified and selective open-domain QA,” in Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds. Association for Computational Linguistics, 2023, pp. 6420–6432. [Online]. Available: https://doi.org/10.18653/v1/2023.findings-acl.401
- K. Huang, C. Zhai, and H. Ji, “CONCRETE: improving cross-lingual fact-checking with cross-lingual retrieval,” in Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022, N. Calzolari, C. Huang, H. Kim, J. Pustejovsky, L. Wanner, K. Choi, P. Ryu, H. Chen, L. Donatelli, H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee, E. Santus, F. Bond, and S. Na, Eds. International Committee on Computational Linguistics, 2022, pp. 1024–1035. [Online]. Available: https://aclanthology.org/2022.coling-1.86
- Y. Liu, Y. Wan, L. He, H. Peng, and P. S. Yu, “KG-BART: knowledge graph-augmented BART for generative commonsense reasoning,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021, pp. 6418–6425. [Online]. Available: https://doi.org/10.1609/aaai.v35i7.16796
- H. Zhang, Z. Liu, C. Xiong, and Z. Liu, “Grounded conversation generation as guided traverses in commonsense knowledge graphs,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, Eds. Association for Computational Linguistics, 2020, pp. 2031–2043. [Online]. Available: https://doi.org/10.18653/v1/2020.acl-main.184
- D. Cai, Y. Wang, W. Bi, Z. Tu, X. Liu, W. Lam, and S. Shi, “Skeleton-to-response: Dialogue generation guided by retrieval memory,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds. Association for Computational Linguistics, 2019, pp. 1219–1228. [Online]. Available: https://doi.org/10.18653/v1/n19-1124
- M. Komeili, K. Shuster, and J. Weston, “Internet-augmented dialogue generation,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds. Association for Computational Linguistics, 2022, pp. 8460–8478. [Online]. Available: https://doi.org/10.18653/v1/2022.acl-long.579
- K. Shuster, J. Xu, M. Komeili, D. Ju, E. M. Smith, S. Roller, M. Ung, M. Chen, K. Arora, J. Lane, M. Behrooz, W. Ngan, S. Poff, N. Goyal, A. Szlam, Y. Boureau, M. Kambadur, and J. Weston, “Blenderbot 3: a deployed conversational agent that continually learns to responsibly engage,” CoRR, vol. abs/2208.03188, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2208.03188
- S. Kim, J. Y. Jang, M. Jung, and S. Shin, “A model of cross-lingual knowledge-grounded response generation for open-domain dialogue systems,” in Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds. Association for Computational Linguistics, 2021, pp. 352–365. [Online]. Available: https://doi.org/10.18653/v1/2021.findings-emnlp.33
- D. Cai, Y. Wang, H. Li, W. Lam, and L. Liu, “Neural machine translation with monolingual translation memory,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, C. Zong, F. Xia, W. Li, and R. Navigli, Eds. Association for Computational Linguistics, 2021, pp. 7307–7318. [Online]. Available: https://doi.org/10.18653/v1/2021.acl-long.567
- U. Khandelwal, A. Fan, D. Jurafsky, L. Zettlemoyer, and M. Lewis, “Nearest neighbor machine translation,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. [Online]. Available: https://openreview.net/forum?id=7wCBOfJ8hJM
- X. Du and H. Ji, “Retrieval-augmented generative question answering for event argument extraction,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds. Association for Computational Linguistics, 2022, pp. 4649–4666. [Online]. Available: https://doi.org/10.18653/v1/2022.emnlp-main.307
- Y. Gao, Q. Yin, Z. Li, R. Meng, T. Zhao, B. Yin, I. King, and M. R. Lyu, “Retrieval-augmented multilingual keyphrase generation with retriever-generator iterative training,” in Findings of the Association for Computational Linguistics: NAACL 2022, Seattle, WA, United States, July 10-15, 2022, M. Carpuat, M. de Marneffe, and I. V. M. Ruíz, Eds. Association for Computational Linguistics, 2022, pp. 1233–1246. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-naacl.92
- A. Madaan, S. Zhou, U. Alon, Y. Yang, and G. Neubig, “Language models of code are few-shot commonsense learners,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds. Association for Computational Linguistics, 2022, pp. 1384–1403. [Online]. Available: https://doi.org/10.18653/v1/2022.emnlp-main.90
- Y. Wang, H. Le, A. Gotmare, N. D. Q. Bui, J. Li, and S. C. H. Hoi, “Codet5+: Open code large language models for code understanding and generation,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds. Association for Computational Linguistics, 2023, pp. 1069–1088. [Online]. Available: https://aclanthology.org/2023.emnlp-main.68
- N. Beau and B. Crabbé, “The impact of lexical and grammatical processing on generating code from natural language,” in Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds. Association for Computational Linguistics, 2022, pp. 2204–2214. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-acl.173
- B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine: Exemplar-based neural comment generation,” in 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE, 2020, pp. 349–360. [Online]. Available: https://doi.org/10.1145/3324884.3416578
- S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, “Retrieval-augmented generation for code summarization via hybrid GNN,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. [Online]. Available: https://openreview.net/forum?id=zv-typ1gPxA
- F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering vulnerabilities with code property graphs,” in 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE Computer Society, 2014, pp. 590–604. [Online]. Available: https://doi.org/10.1109/SP.2014.44
- S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng, S. Fu, and S. Liu, “Codexglue: A machine learning benchmark dataset for code understanding and generation,” in Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, J. Vanschoren and S. Yeung, Eds., 2021. [Online]. Available: https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
- Y. Ding, Z. Wang, W. U. Ahmad, M. K. Ramanathan, R. Nallapati, P. Bhatia, D. Roth, and B. Xiang, “Cocomic: Code completion by jointly modeling in-file and cross-file context,” CoRR, vol. abs/2212.10007, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2212.10007
- B. Bogin, S. Gupta, P. Clark, and A. Sabharwal, “Leveraging code to improve in-context learning for semantic parsing,” arXiv preprint arXiv:2311.09519, 2023.
- Z. Jie and W. Lu, “Leveraging training data in few-shot prompting for numerical reasoning,” arXiv preprint arXiv:2305.18170, 2023.
- Y. Hao, W. Chen, Z. Zhou, and W. Cui, “E&v: Prompting large language models to perform static analysis by pseudo-code execution and verification,” arXiv preprint arXiv:2312.08477, 2023.
- G. Pinto, C. de Souza, J. B. Neto, A. de Souza, T. Gotto, and E. Monteiro, “Lessons from building stackspot ai: A contextualized ai coding assistant,” 2024.
- S. Ghosh, S. Kumar, C. K. R. Evuru, R. Duraiswami, and D. Manocha, “RECAP: retrieval-augmented audio captioning,” CoRR, vol. abs/2309.09836, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.09836
- B. Elizalde, S. Deshmukh, and H. Wang, “Natural language supervision for general-purpose audio representations,” CoRR, vol. abs/2309.05767, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.05767
- T. Kouzelis and V. Katsouros, “Weakly-supervised automated audio captioning via text only training,” CoRR, vol. abs/2309.12242, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.12242
- S. Deshmukh, B. Elizalde, D. Emmanouilidou, B. Raj, R. Singh, and H. Wang, “Training audio captioning models without audio,” CoRR, vol. abs/2309.07372, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.07372
- Y. Kirstain, O. Levy, and A. Polyak, “X&fuse: Fusing visual information in text-to-image generation,” arXiv preprint arXiv:2303.01000, 2023.
- Z. Zhang, A. Zhang, M. Li, H. Zhao, G. Karypis, and A. Smola, “Multimodal chain-of-thought reasoning in language models,” arXiv preprint arXiv:2302.00923, 2023.
- C. Xu, M. Yang, X. Ao, Y. Shen, R. Xu, and J. Tian, “Retrieval-enhanced adversarial training with dynamic memory-augmented attention for image paragraph captioning,” Knowledge-Based Systems, vol. 214, p. 106730, 2021.
- R. Ramos, D. Elliott, and B. Martins, “Retrieval-augmented image captioning,” arXiv preprint arXiv:2302.08268, 2023.
- Z. Hu, A. Iscen, C. Sun, Z. Wang, K.-W. Chang, Y. Sun, C. Schmid, D. A. Ross, and A. Fathi, “Reveal: Retrieval-augmented visual-language pre-training with multi-source multimodal knowledge memory,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 23 369–23 379.
- Z. Li, W. Zhao, X. Du, G. Zhou, and S. Zhang, “Cross-modal retrieval and semantic refinement for remote sensing image captioning,” Remote Sensing, vol. 16, no. 1, p. 196, 2024.
- S. Chen, Q. Liu, Z. Yu, C. Lin, J. Lou, and F. Jiang, “Retrack: A flexible and efficient framework for knowledge base question answering,” in Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL 2021 - System Demonstrations, Online, August 1-6, 2021, H. Ji, J. C. Park, and R. Xia, Eds. Association for Computational Linguistics, 2021, pp. 325–336. [Online]. Available: https://doi.org/10.18653/v1/2021.acl-demo.39
- K. D. Bollacker, C. Evans, P. K. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collaboratively created graph database for structuring human knowledge,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, J. T. Wang, Ed. ACM, 2008, pp. 1247–1250. [Online]. Available: https://doi.org/10.1145/1376616.1376746
- Y. Shu and Z. Yu, “Data distribution bottlenecks in grounding language models to knowledge bases,” CoRR, vol. abs/2309.08345, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.08345
- D. Leake and D. J. Crandall, “On bringing case-based reasoning methodology to deep learning,” in Case-Based Reasoning Research and Development - 28th International Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings, ser. Lecture Notes in Computer Science, I. Watson and R. O. Weber, Eds., vol. 12311. Springer, 2020, pp. 343–348. [Online]. Available: https://doi.org/10.1007/978-3-030-58342-2_22
- L. Zhang, J. Zhang, Y. Wang, S. Cao, X. Huang, C. Li, H. Chen, and J. Li, “FC-KBQA: A fine-to-coarse composition framework for knowledge base question answering,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds. Association for Computational Linguistics, 2023, pp. 1002–1017. [Online]. Available: https://doi.org/10.18653/v1/2023.acl-long.57
- C. Wang, Y. Xu, Z. Peng, C. Zhang, B. Chen, X. Wang, L. Feng, and B. An, “keqing: knowledge-based question answering is a nature chain-of-thought mentor of LLM,” CoRR, vol. abs/2401.00426, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.00426
- J. Liu, S. Cao, J. Shi, T. Zhang, L. Hou, and J. Li, “Probing structured semantics understanding and generation of language models via question answering,” CoRR, vol. abs/2401.05777, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.05777
- D. Weininger, “Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules,” Journal of Chemical Information and Computer Sciences, 1988.
- R. Irwin, S. Dimitriadis, J. He, and E. J. Bjerrum, “Chemformer: a pre-trained transformer for computational chemistry,” Machine Learning: Science and Technology, 2022.
- A. C. Anderson, “The process of structure-based drug design,” Chemistry & biology, vol. 10, no. 9, pp. 787–797, 2003.
- M. Batool, B. Ahmad, and S. Choi, “A structure-based drug discovery paradigm,” International journal of molecular sciences, vol. 20, no. 11, p. 2783, 2019.
- L. Yang, Z. Huang, X. Zhou, M. Xu, W. Zhang, Y. Wang, X. Zheng, W. Yang, R. O. Dror, S. Hong et al., “Prompt-based 3d molecular diffusion models for structure-based drug design,” 2023.
- D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
- J. Chen, H. Lin, X. Han, and L. Sun, “Benchmarking large language models in retrieval-augmented generation,” CoRR, vol. abs/2309.01431, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.01431
- S. ES, J. James, L. E. Anke, and S. Schockaert, “RAGAS: automated evaluation of retrieval augmented generation,” CoRR, vol. abs/2309.15217, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.15217
- J. Saad-Falcon, O. Khattab, C. Potts, and M. Zaharia, “ARES: an automated evaluation framework for retrieval-augmented generation systems,” CoRR, vol. abs/2311.09476, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2311.09476
- https://github.com/truera/trulens.
- Y. Lyu, Z. Li, S. Niu, F. Xiong, B. Tang, W. Wang, H. Wu, H. Liu, T. Xu, and E. Chen, “CRUD-RAG: A comprehensive chinese benchmark for retrieval-augmented generation of large language models,” CoRR, vol. abs/2401.17043, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.17043
- S. Barnett, S. Kurniawan, S. Thudumu, Z. Brannelly, and M. Abdelrazek, “Seven failure points when engineering a retrieval augmented generation system,” CoRR, vol. abs/2401.05856, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.05856
- F. Cuconasu, G. Trappolini, F. Siciliano, S. Filice, C. Campagnano, Y. Maarek, N. Tonellotto, and F. Silvestri, “The power of noise: Redefining retrieval for RAG systems,” CoRR, vol. abs/2401.14887, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.14887
- L. Qiu, P. Shaw, P. Pasupat, T. Shi, J. Herzig, E. Pitler, F. Sha, and K. Toutanova, “Evaluating the impact of model scale for compositional generalization in semantic parsing,” arXiv preprint arXiv:2205.12253, 2022.
- R. Aksitov, C. Chang, D. Reitter, S. Shakeri, and Y. Sung, “Characterizing attribution and fluency tradeoffs for retrieval-augmented large language models,” CoRR, vol. abs/2302.05578, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.05578
- C. Han, Q. Wang, W. Xiong, Y. Chen, H. Ji, and S. Wang, “Lm-infinite: Simple on-the-fly length generalization for large language models,” CoRR, vol. abs/2308.16137, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2308.16137
- S. Jindal, “Did google gemini 1.5 really kill rag?” https://analyticsindiamag.com/did-google-gemini-1-5-really-kill-rag/, 2024.
- H. Chase, “Langchain,” https://github.com/langchain-ai/langchain, 2022.