Weighted least $\ell_p$ approximation on compact Riemannian manifolds (2402.19132v1)
Abstract: Given a sequence of Marcinkiewicz-Zygmund inequalities in $L_2$ on a compact space, Gr\"ochenig in \cite{G} discussed weighted least squares approximation and least squares quadrature. Inspired by this work, for all $1\le p\le\infty$, we develop weighted least $\ell_p$ approximation induced by a sequence of Marcinkiewicz-Zygmund inequalities in $L_p$ on a compact smooth Riemannian manifold $\Bbb M$ with normalized Riemannian measure (typical examples are the torus and the sphere). In this paper we derive corresponding approximation theorems with the error measured in $L_q,\,1\le q\le\infty$, and least quadrature errors for both Sobolev spaces $H_pr(\Bbb M), \, r>d/p$ generated by eigenfunctions associated with the Laplace-Beltrami operator and Besov spaces $B_{p,\tau}r(\Bbb M),\, 0<\tau\le \infty, r>d/p $ defined by best polynomial approximation. Finally, we discuss the optimality of the obtained results by giving sharp estimates of sampling numbers and optimal quadrature errors for the aforementioned spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.