Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

At the Dawn of Generative AI Era: A Tutorial-cum-Survey on New Frontiers in 6G Wireless Intelligence (2402.18587v1)

Published 2 Feb 2024 in cs.NI, cs.AI, and cs.LG

Abstract: The majority of data-driven wireless research leans heavily on discriminative AI (DAI) that requires vast real-world datasets. Unlike the DAI, Generative AI (GenAI) pertains to generative models (GMs) capable of discerning the underlying data distribution, patterns, and features of the input data. This makes GenAI a crucial asset in wireless domain wherein real-world data is often scarce, incomplete, costly to acquire, and hard to model or comprehend. With these appealing attributes, GenAI can replace or supplement DAI methods in various capacities. Accordingly, this combined tutorial-survey paper commences with preliminaries of 6G and wireless intelligence by outlining candidate 6G applications and services, presenting a taxonomy of state-of-the-art DAI models, exemplifying prominent DAI use cases, and elucidating the multifaceted ways through which GenAI enhances DAI. Subsequently, we present a tutorial on GMs by spotlighting seminal examples such as generative adversarial networks, variational autoencoders, flow-based GMs, diffusion-based GMs, generative transformers, LLMs, to name a few. Contrary to the prevailing belief that GenAI is a nascent trend, our exhaustive review of approximately 120 technical papers demonstrates the scope of research across core wireless research areas, including physical layer design; network optimization, organization, and management; network traffic analytics; cross-layer network security; and localization & positioning. Furthermore, we outline the central role of GMs in pioneering areas of 6G network research, including semantic/THz/near-field communications, ISAC, extremely large antenna arrays, digital twins, AI-generated content services, mobile edge computing and edge AI, adversarial ML, and trustworthy AI. Lastly, we shed light on the multifarious challenges ahead, suggesting potential strategies and promising remedies.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube