Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Provably Efficient Partially Observable Risk-Sensitive Reinforcement Learning with Hindsight Observation (2402.18149v1)

Published 28 Feb 2024 in cs.LG and stat.ML

Abstract: This work pioneers regret analysis of risk-sensitive reinforcement learning in partially observable environments with hindsight observation, addressing a gap in theoretical exploration. We introduce a novel formulation that integrates hindsight observations into a Partially Observable Markov Decision Process (POMDP) framework, where the goal is to optimize accumulated reward under the entropic risk measure. We develop the first provably efficient RL algorithm tailored for this setting. We also prove by rigorous analysis that our algorithm achieves polynomial regret $\tilde{O}\left(\frac{e{|{\gamma}|H}-1}{|{\gamma}|H}H2\sqrt{KHS2OA}\right)$, which outperforms or matches existing upper bounds when the model degenerates to risk-neutral or fully observable settings. We adopt the method of change-of-measure and develop a novel analytical tool of beta vectors to streamline mathematical derivations. These techniques are of particular interest to the theoretical study of reinforcement learning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: