Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

V2C-Long: Longitudinal Cortex Reconstruction with Spatiotemporal Correspondence (2402.17438v2)

Published 27 Feb 2024 in eess.IV and cs.CV

Abstract: Reconstructing the cortex from longitudinal magnetic resonance imaging (MRI) is indispensable for analyzing morphological alterations in the human brain. Despite the recent advancement of cortical surface reconstruction with deep learning, challenges arising from longitudinal data are still persistent. Especially the lack of strong spatiotemporal point correspondence between highly convoluted brain surfaces hinders downstream analyses, as local morphology is not directly comparable if the anatomical location is not matched precisely. To address this issue, we present V2C-Long, the first dedicated deep learning-based cortex reconstruction method for longitudinal MRI. V2C-Long exhibits strong inherent spatiotemporal correspondence across subjects and visits, thereby reducing the need for surface-based post-processing. We establish this correspondence directly during the reconstruction via the composition of two deep template-deformation networks and innovative aggregation of within-subject templates in mesh space. We validate V2C-Long on two large neuroimaging studies, focusing on surface accuracy, consistency, generalization, test-retest reliability, and sensitivity. The results reveal a substantial improvement in longitudinal consistency and accuracy compared to existing methods. In addition, we demonstrate stronger evidence for longitudinal cortical atrophy in Alzheimer's disease than longitudinal FreeSurfer.

Summary

We haven't generated a summary for this paper yet.