Generative Learning for Forecasting the Dynamics of Complex Systems (2402.17157v1)
Abstract: We introduce generative models for accelerating simulations of complex systems through learning and evolving their effective dynamics. In the proposed Generative Learning of Effective Dynamics (G-LED), instances of high dimensional data are down sampled to a lower dimensional manifold that is evolved through an auto-regressive attention mechanism. In turn, Bayesian diffusion models, that map this low-dimensional manifold onto its corresponding high-dimensional space, capture the statistics of the system dynamics. We demonstrate the capabilities and drawbacks of G-LED in simulations of several benchmark systems, including the Kuramoto-Sivashinsky (KS) equation, two-dimensional high Reynolds number flow over a backward-facing step, and simulations of three-dimensional turbulent channel flow. The results demonstrate that generative learning offers new frontiers for the accurate forecasting of the statistical properties of complex systems at a reduced computational cost.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.