Emergent Mind

Dataset Fairness: Achievable Fairness on Your Data With Utility Guarantees

(2402.17106)
Published Feb 27, 2024 in stat.ML , cs.CY , and cs.LG

Abstract

In machine learning fairness, training models which minimize disparity across different sensitive groups often leads to diminished accuracy, a phenomenon known as the fairness-accuracy trade-off. The severity of this trade-off fundamentally depends on dataset characteristics such as dataset imbalances or biases. Therefore using a uniform fairness requirement across datasets remains questionable and can often lead to models with substantially low utility. To address this, we present a computationally efficient approach to approximate the fairness-accuracy trade-off curve tailored to individual datasets, backed by rigorous statistical guarantees. By utilizing the You-Only-Train-Once (YOTO) framework, our approach mitigates the computational burden of having to train multiple models when approximating the trade-off curve. Moreover, we quantify the uncertainty in our approximation by introducing confidence intervals around this curve, offering a statistically grounded perspective on the acceptable range of fairness violations for any given accuracy threshold. Our empirical evaluation spanning tabular, image and language datasets underscores that our approach provides practitioners with a principled framework for dataset-specific fairness decisions across various data modalities.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.

YouTube