Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review (2402.17020v1)

Published 26 Feb 2024 in cs.CR

Abstract: The increase in network attacks has necessitated the development of robust and efficient intrusion detection systems (IDS) capable of identifying malicious activities in real-time. In the last five years, deep learning algorithms have emerged as powerful tools in this domain, offering enhanced detection capabilities compared to traditional methods. This review paper studies recent advancements in the application of deep learning techniques, including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems. we delve into the unique architectures, training models, and classification methodologies tailored for network traffic analysis and anomaly detection. Furthermore, we analyze the strengths and limitations of each deep learning approach in terms of detection accuracy, computational efficiency, scalability, and adaptability to evolving threats. Additionally, this paper highlights prominent datasets and benchmarking frameworks commonly utilized for evaluating the performance of deep learning-based IDS. This review will provide researchers and industry practitioners with valuable insights into the state-of-the-art deep learning algorithms for enhancing the security framework of network environments through intrusion detection.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube