Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Attention Based Molecule Generation via Hierarchical Variational Autoencoder (2402.16854v1)

Published 18 Jan 2024 in q-bio.BM and cs.LG

Abstract: Molecule generation is a task made very difficult by the complex ways in which we represent molecules computationally. A common technique used in molecular generative modeling is to use SMILES strings with recurrent neural networks built into variational autoencoders - but these suffer from a myriad of issues: vanishing gradients, long-range forgetting, and invalid molecules. In this work, we show that by combining recurrent neural networks with convolutional networks in a hierarchical manner, we are able to both extract autoregressive information from SMILES strings while maintaining signal and long-range dependencies. This allows for generations with very high validity rates on the order of 95% when reconstructing known molecules. We also observe an average Tanimoto similarity of .6 between test set and reconstructed molecules, which suggests our method is able to map between SMILES strings and their learned representations in a more effective way than prior works using similar methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.