The Art of Staying Ahead of Deadlines: Improved Algorithms for the Minimum Tardy Processing Time (2402.16847v2)
Abstract: We study the fundamental scheduling problem $1|\sum p_jU_j$. Given a set of $n$ jobs with processing times $p_j$ and deadlines $d_j$, the problem is to select a subset of jobs such that the total processing time is maximized without violating the deadlines. In the midst of a flourishing line of research, Fischer and Wennmann have recently devised the sought-after $\widetilde O(P)$-time algorithm, where $P = \sum p_j$ is the total processing time of all jobs. This running time is optimal as it matches conditional lower bounds based on popular conjectures. However, $P$ is not the sole parameter one could parameterize the running time by. Indeed, they explicitly leave open the question of whether a running time of $\widetilde O(n + \max d_j)$ or even $\widetilde O(n + \max p_j)$ is possible. In this work, we show, somewhat surprisingly, that by a refined implementation of their original algorithm, one can obtain the asked-for $\widetilde O(n + \max d_j)$-time algorithm.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.