Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The Art of Staying Ahead of Deadlines: Improved Algorithms for the Minimum Tardy Processing Time (2402.16847v2)

Published 26 Feb 2024 in cs.DS and cs.CC

Abstract: We study the fundamental scheduling problem $1|\sum p_jU_j$. Given a set of $n$ jobs with processing times $p_j$ and deadlines $d_j$, the problem is to select a subset of jobs such that the total processing time is maximized without violating the deadlines. In the midst of a flourishing line of research, Fischer and Wennmann have recently devised the sought-after $\widetilde O(P)$-time algorithm, where $P = \sum p_j$ is the total processing time of all jobs. This running time is optimal as it matches conditional lower bounds based on popular conjectures. However, $P$ is not the sole parameter one could parameterize the running time by. Indeed, they explicitly leave open the question of whether a running time of $\widetilde O(n + \max d_j)$ or even $\widetilde O(n + \max p_j)$ is possible. In this work, we show, somewhat surprisingly, that by a refined implementation of their original algorithm, one can obtain the asked-for $\widetilde O(n + \max d_j)$-time algorithm.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)