Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Empirical Interpretation of Internal Circuits and Properties in Grokked Transformers on Modular Polynomials (2402.16726v4)

Published 26 Feb 2024 in cs.LG and cs.AI

Abstract: Grokking has been actively explored to reveal the mystery of delayed generalization and identifying interpretable representations and algorithms inside the grokked models is a suggestive hint to understanding its mechanism. Grokking on modular addition has been known to implement Fourier representation and its calculation circuits with trigonometric identities in Transformers. Considering the periodicity in modular arithmetic, the natural question is to what extent these explanations and interpretations hold for the grokking on other modular operations beyond addition. For a closer look, we first hypothesize that any modular operations can be characterized with distinctive Fourier representation or internal circuits, grokked models obtain common features transferable among similar operations, and mixing datasets with similar operations promotes grokking. Then, we extensively examine them by learning Transformers on complex modular arithmetic tasks, including polynomials. Our Fourier analysis and novel progress measure for modular arithmetic, Fourier Frequency Density and Fourier Coefficient Ratio, characterize distinctive internal representations of grokked models per modular operation; for instance, polynomials often result in the superposition of the Fourier components seen in elementary arithmetic, but clear patterns do not emerge in challenging non-factorizable polynomials. In contrast, our ablation study on the pre-grokked models reveals that the transferability among the models grokked with each operation can be only limited to specific combinations, such as from elementary arithmetic to linear expressions. Moreover, some multi-task mixtures may lead to co-grokking -- where grokking simultaneously happens for all the tasks -- and accelerate generalization, while others may not find optimal solutions. We provide empirical steps towards the interpretability of internal circuits.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets