Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms for Halfplane Coverage and Related Problems (2402.16323v1)

Published 26 Feb 2024 in cs.CG and cs.DS

Abstract: Given in the plane a set of points and a set of halfplanes, we consider the problem of computing a smallest subset of halfplanes whose union covers all points. In this paper, we present an $O(n{4/3}\log{5/3}n\log{O(1)}\log n)$-time algorithm for the problem, where $n$ is the total number of all points and halfplanes. This improves the previously best algorithm of $n{10/3}2{O(\log*n)}$ time by roughly a quadratic factor. For the special case where all halfplanes are lower ones, our algorithm runs in $O(n\log n)$ time, which improves the previously best algorithm of $n{4/3}2{O(\log*n)}$ time and matches an $\Omega(n\log n)$ lower bound. Further, our techniques can be extended to solve a star-shaped polygon coverage problem in $O(n\log n)$ time, which in turn leads to an $O(n\log n)$-time algorithm for computing an instance-optimal $\epsilon$-kernel of a set of $n$ points in the plane. Agarwal and Har-Peled presented an $O(nk\log n)$-time algorithm for this problem in SoCG 2023, where $k$ is the size of the $\epsilon$-kernel; they also raised an open question whether the problem can be solved in $O(n\log n)$ time. Our result thus answers the open question affirmatively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Computing instance-optimal kernels in two dimensions. In Proceedings of the 39th International Symposium on Computational Geometry (SoCG), pages 4:1–4:15, 2023. doi:10.4230/LIPIcs.SoCG.2023.4.
  2. Approximating extent measures of points. Journal of the ACM, 51:606–635, 2004. doi:10.1145/1008731.1008736.
  3. Near-linear algorithms for geometric hitting sets and set covers. Discrete and Computational Geometry, 63:460–482, 2020. doi:10.1007/s00454-019-00099-6.
  4. The discrete 2-center problem. Discrete and Computational Geometry, 20:287–305, 1998. doi:10.1007/PL00009387.
  5. Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In Proceedings of the 9th International Conference on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), and the 10th International Conference on Randomization and Computation (RANDOM), pages 3–14, 2006. doi:10.1007/11830924_3.
  6. Minimum-membership geometric set cover, revisited. In Proceedings of the 39th International Symposium on Computational Geometry (SoCG), pages 11:1–11:14, 2023. doi:10.4230/LIPIcs.SoCG.2023.11.
  7. Michael Ben-Or. Lower bounds for algebraic computation trees (preliminary report). In Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC), pages 80–86, 1983. doi:10.1145/800061.808735.
  8. Minimum ply covering of points with disks and squares. Computational Geometry: Theory and Applications, 94:101712, 2020. doi:10.1016/j.comgeo.2020.101712.
  9. Covering points by unit disks of fixed location. In Proceedings of the International Symposium on Algorithms and Computation (ISAAC), pages 644–655, 2007. doi:10.1007/978-3-540-77120-3_56.
  10. Exact algorithms and APX-hardness results for geometric packing and covering problems. Computational Geometry: Theory and Applications, 47:112–124, 2014. doi:10.1016/j.comgeo.2012.04.001.
  11. Ray shooting in polygons using geodesic triangulations. Algorithmica, 12:54–68, 1994. doi:10.1007/BF01377183.
  12. Visibility and intersection problems in plane geometry. Discrete and Computational Geometry, 4:551–589, 1989. doi:10.1007/BF02187747.
  13. An improved line-separable algorithm for discrete unit disk cover. Discrete Mathematics, Algorithms and Applications, pages 77–88, 2010. doi:10.1142/S1793830910000486.
  14. Minimum ply covering of points with unit disks. In Proceedings of the 35th Canadian Conference on Computational Geometry (CCCG), pages 19–25, 2023.
  15. Jeff Erickson. New lower bounds for Hopcroft’s problem. Discrete and Computational Geometry, 16:389–418, 1996. doi:10.1007/BF02712875.
  16. Optimal algorithms for approximate clustering. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pages 434–444, 1988. doi:10.1145/62212.62255.
  17. Optimal packing and covering in the plane are NP-complete. Information Processing Letters, 12:133–137, 1981. doi:10.1016/0020-0190(81)90111-3.
  18. Weighted geometric set cover problems revisited. Journal of Computational Geometry, 3:65–85, 2012. doi:10.20382/jocg.v3i1a4.
  19. On the budgeted hausdorff distance problem. In Proceedings of the 35th Canadian Conference on Computational Geometry (CCCG), pages 169–173, 2023.
  20. A pedestrian approach to ray shooting: Shoot a ray, take a walk. Journal of Algorithms, 18:403–431, 1995. doi:10.1006/jagm.1995.1017.
  21. On a circle-cover minimization problem. Information Processing Letters, 18:109–115, 1984. doi:10.1016/0020-0190(84)90033-4.
  22. A PTAS for the weighted unit disk cover problem. In Proceedings of the 42nd International Colloquium on Automata, Languages and Programming (ICALP), pages 898–909, 2015. doi:10.1007/978-3-662-47672-7_73.
  23. On the line-separable unit-disk coverage and related problems, 2014. https://arxiv.org/abs/2309.03162.
  24. On the line-separable unit-disk coverage and related problems. In Proceedings of the 34th International Symposium on Algorithms and Computation (ISAAC), pages 51:1–51:14, 2023. doi:10.4230/LIPIcs.ISAAC.2023.51.
  25. Jir̆í Matoušek. Efficient partition trees. Discrete and Computational Geometry, 8(3):315–334, 1992. doi:10.1007/BF02293051.
  26. Jir̆í Matoušek. Range searching with efficient hierarchical cuttings. Discrete and Computational Geometry, 10(1):157–182, 1993. doi:10.1007/BF02573972.
  27. Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. Journal of the ACM, 31:114–127, 1984. doi:10.1145/2422.322418.
  28. Joseph S. B. Mitchell and Supantha Pandit. Minimum membership covering and hitting. Computational Geometry: Theory and Applications, 876:1–11, 2021. doi:10.1016/j.tcs.2021.05.002.
  29. Settling the APX-hardness status for geometric set cover. In Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 541–550, 2014. doi:10.1109/FOCS.2014.64.
  30. PTAS for geometric hitting set problems via local search. In Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG), pages 17–22, 2009. doi:10.1145/1542362.1542367.
  31. Algorithms for the line-constrained disk coverage and related problems. Computational Geometry: Theory and Applications, 105-106:101883:1–18, 2022. doi:10.1016/j.comgeo.2022.101883.
  32. Haitao Wang. Unit-disk range searching and applications. Journal of Computational Geometry, 14:343–394, 2023. doi:10.20382/jocg.v14i1a13.
  33. Practical methods for shape fitting and kinetic data structures using coresets. Journal of the ACM, 52:378–402, 2008. doi:10.1007/s00453-007-9067-9.
Citations (3)

Summary

We haven't generated a summary for this paper yet.