Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Photon-counting CT using a Conditional Diffusion Model for Super-resolution and Texture-preservation (2402.16212v1)

Published 25 Feb 2024 in eess.IV

Abstract: Ultra-high resolution images are desirable in photon counting CT (PCCT), but resolution is physically limited by interactions such as charge sharing. Deep learning is a possible method for super-resolution (SR), but sourcing paired training data that adequately models the target task is difficult. Additionally, SR algorithms can distort noise texture, which is an important in many clinical diagnostic scenarios. Here, we train conditional denoising diffusion probabilistic models (DDPMs) for PCCT super-resolution, with the objective to retain textural characteristics of local noise. PCCT simulation methods are used to synthesize realistic resolution degradation. To preserve noise texture, we explore decoupling the noise and signal image inputs and outputs via deep denoisers, explicitly mapping to each during the SR process. Our experimental results indicate that our DDPM trained on simulated data can improve sharpness in real PCCT images. Additionally, the disentanglement of noise from the original image allows our model more faithfully preserve noise texture.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. M. J. Willemink, M. Persson, A. Pourmorteza, N. J. Pelc, and D. Fleischmann, “Photon-counting CT: Technical Principles and Clinical Prospects,” Radiology, vol. 289, no. 2, pp. 293–312, Nov. 2018.
  2. B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single image super-resolution,” in CVPR, 2017, pp. 136–144.
  3. Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-resolution using very deep residual channel attention networks,” in ECCV, 2018, pp. 286–301.
  4. K. Zhang, W. Zuo, and L. Zhang, “Deep plug-and-play super-resolution for arbitrary blur kernels,” in CVPR, 2019, pp. 1671–1681.
  5. C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single image super-resolution using a generative adversarial network,” in CVPR, 2017, pp. 4681–4690.
  6. S. Menon, A. Damian, S. Hu, N. Ravi, and C. Rudin, “Pulse: Self-supervised photo upsampling via latent space exploration of generative models,” in CVPR, 2020, pp. 2437–2445.
  7. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” NeurIPS, vol. 33, pp. 6840–6851, 2020.
  8. Y. Song, L. Shen, L. Xing, and S. Ermon, “Solving inverse problems in medical imaging with score-based generative models,” in ICLR, 2022.
  9. H. Chung, B. Sim, D. Ryu, and J. C. Ye, “Improving diffusion models for inverse problems using manifold constraints,” in NeurIPS.
  10. W. Xia, W. Cong, and G. Wang, “Patch-based denoising diffusion probabilistic model for sparse-view CT reconstruction,” arXiv preprint arXiv:2211.10388, 2022.
  11. P. Dhariwal and A. Nichol, “Diffusion models beat GANs on image synthesis,” 2021.
  12. C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, “Image super-resolution via iterative refinement,” IEEE TPAMI, 2022.
  13. H. Yu, D. Liu, H. Shi, H. Yu, Z. Wang, X. Wang, B. Cross, M. Bramler, and T. S. Huang, “Computed tomography super-resolution using convolutional neural networks,” in ICIP, 2017, pp. 3944–3948.
  14. C. You, G. Li, Y. Zhang, X. Zhang, H. Shan, M. Li, S. Ju, Z. Zhao, Z. Zhang, W. Cong et al., “CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE),” IEEE TMI, vol. 39, no. 1, pp. 188–203, 2019.
  15. X. Jiang, Y. Xu, P. Wei, and Z. Zhou, “CT image super resolution based on improved srgan,” in ICCCS.   IEEE, 2020, pp. 363–367.
  16. M. Li, D. S. Rundle, and G. Wang, “X-ray photon-counting data correction through deep learning,” arXiv preprint arXiv:2007.03119, 2020.
  17. C. Niu, C. Wiedeman, M. Li, J. Maltz, and G. Wang, “3D photon counting CT image super-resolution using conditional diffusion model,” in 17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, Stony Brook, NY, USA, 2023.
  18. B. D. Man, S. Basu, N. Chandra, B. Dunham, P. Edic, M. Iatrou, S. McOlash, P. Sainath, C. Shaughnessy, B. Tower, and E. Williams, “CatSim: a new computer assisted tomography simulation environment,” in Medical Imaging 2007: Physics of Medical Imaging, vol. 6510, 2007, p. 65102G.
  19. M. Wu, P. FitzGerald, J. Zhang, W. P. Segars, H. Yu, Y. Xu, and B. D. Man, “XCIST—an open access x-ray/CT simulation toolkit,” Physics in Medicine & Biology, vol. 67, no. 19, p. 194002, 2022.
  20. C. Niu, M. Li, F. Fan, W. Wu, X. Guo, Q. Lyu, and G. Wang, “Noise suppression with similarity-based self-supervised deep learning,” IEEE Transactions on Medical Imaging, vol. 42, no. 6, pp. 1590–1602, 2023.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.