Papers
Topics
Authors
Recent
2000 character limit reached

On the dynamics of three-layer neural networks: initial condensation (2402.15958v2)

Published 25 Feb 2024 in cs.LG and math.DS

Abstract: Empirical and theoretical works show that the input weights of two-layer neural networks, when initialized with small values, converge towards isolated orientations. This phenomenon, referred to as condensation, indicates that the gradient descent methods tend to spontaneously reduce the complexity of neural networks during the training process. In this work, we elucidate the mechanisms behind the condensation phenomena occurring in the training of three-layer neural networks and distinguish it from the training of two-layer neural networks. Through rigorous theoretical analysis, we establish the blow-up property of effective dynamics and present a sufficient condition for the occurrence of condensation, findings that are substantiated by experimental results. Additionally, we explore the association between condensation and the low-rank bias observed in deep matrix factorization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.